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ABSTRACT

In this paper, we propose a novel method for image tamper-
ing detection in multi-type blurred images. After block-based
image partitioning, a space-variant prior for local blur ker-
nels is proposed for local blur kernels estimation. Then, the
image blocks are clustered using a k-means clustering based
on the similarity of local blur kernels to generate blur type
invariant regions. Finally, blur types of the regions are clas-
sified into out-of-focus or motion blur using a minimum dis-
tance classifier. The experimental results show that the pro-
posed method successfully detects and classifies the regions
blur types which outperforms the state-of-the-art techniques.
Our proposed approach is used to detect inconsistency in the
partial blur types of an image as an evidence of image tam-
pering.

Index Terms— Tampering detection, image splicing, par-
tial blur type detection.

1. INTRODUCTION AND BACKGROUND

Using photo-editing softwares, image tampering can be done
easily and detection of tampered images is difficult by human
vision system. Since images can be used in journalism, police
investigation and as court evidences, image tampering can be
a threat to security of people and human society. Therefore,
development of reliable methods for image integrity exam-
ination and image tampering detection is important. Image
splicing is one of the most common types of image tamper-
ing. In image splicing, if the original image and spliced region
have different blur types such as motion and out-of-focus, an
inconsistency in the blur type may appears in the tampered
image. The objective of the current work is image splicing
detection by exploration of the inconsistency in the partial
blur types. To the best of our knowledge, this is the first
work that uses out-of-focus and motion blur type inconsis-
tency for image splicing detection. Fig.1 (a) is an authentic
image with motion blur and Fig.1 (b) is a tampered image
generated from the image in (a) by splicing. The tampered
image has inconsistent blur types in the background and the
sign. The background with motion blur indicates movement
of camera with respect to the scene, while the sign with out-
of-focus blur does not have any clue of motion blur. This blur

(a) (b)

Fig. 1. (a) An authentic image with motion blur (b) A tam-
pered image generated from the image (a) which has incon-
sistent blur types in the background (motion blur) and the sign
(out-of-focus blur).

inconsistency can be used as an evidence of tampering.
The existing techniques in the image forensics are divid-

ed into two categories, including active and passive [1]. The
most important passive techniques can be categorized into
(1) pixel-based such as re-sampling [2] and contrast enhance-
ment detection [3]; (2) format-based [4]; (3) camera-based
such as demosaicing regularity [5-7], and sensor pattern noise
[8]; (4) physically-based such as light anomalies [9]. Each
technique has some limitations. For instance, the resampling
technique is only applicable to uncompressed images and
JPEG with minimal compression [2]. The format-based tech-
nique does not work when the same quantization is used in
the second compression [4].

Some works [10-14] have been proposed for image tam-
pering detection based on blur degree inconsistency. How-
ever, these methods can not detect blur type inconsistency.
Kakar et al. [15] proposed an method for splicing detection
based on inconsistency in the motion blur degree and direc-
tion. However, this method is only applicable for motion blur.
Some works have been done for blur type detection and classi-
fication. Chen et al. [16] proposed a method based on lowest
directional high-frequency energy to estimate direction and
region of motion blur. Liu et al. [17] used correlation of
shifted blocks to classify motion and out-of-focus blurs. Su et
al. [18] proposed a technique for segmentation of motion and
out-of-focus blurred regions based on alpha channel. Aizen-
berg et al. [19] proposed a technique for classification of mo-
tion, gaussian and uniform blurred blocks based on magnitude
of cepstrum coefficients. However, for natural blurred blocks,
the approach in [19] has not high performance. The limitation
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of the methods in [16-19] is that they do not have high per-
formance for partial blur type detection. They partition the
image into blocks and use a feature to classify the blur type
of the blocks. However, in real situations, the blur type of the
image blocks is affected by the size of the block, blur degree
and content which are not considered in these methods. We
move on one step further and propose two-step approach to
detect the blur types at block and region levels.

The rest of this paper is organized as follows. In section 2
we propose a method for partial blur type detection and classi-
fication used for tampering detection. Results and discussions
are shown in section 3. Section 4 concludes the paper.

2. PROPOSED METHOD

The proposed method for image splicing detection is ex-
plained in details in the following sections.

2.1. Local Blur Kernels Estimation

Given a color imageB of sizeM×N , we first convert it to the
gray scale imageG and then partitionG into non-overlapping
blocks Gi,j with L × L pixels, where i and j are index of
blocks (1 ≤ i ≤ bML c, 1 ≤ j ≤ bNL c). For an image block
Gi,j , the image blurring process is represented by

Gi,j = Ii,j ∗Ki,j +Ni,j (1)

where Ii,j is a sharp image block, Ki,j is a local blur kernel,
Ni,j is the image block noise and ∗ denotes convolution.

To estimate Ki,j from Gi,j , the Blind Image Deconvolu-
tion (BID) is used which estimate Ki,j and Ii,j from Gi,j .
Using the method in [20] to solve the BID in a Bayesian
framework, a maximum a posteriori (MAP) technique is in-
corporated to estimate Ki,j and Ii,j . However, appropriate
prior model play a key role in optimization problem to solve
BID. By choosing more accurate models for Ki,j and Ii,j ,
better result can be obtained. Also, the blur in the image is
space-variant, choosing proper priors for Ki,j can be effec-
tive in the improvement of the final result. In the literature,
the existing methods used sparse or gaussian prior model for
the blur kernel [21, 22]. However, in the images with multi-
ple blur types such as motion and out-of-focus, choosing the
same prior model for all local blur kernels is not suitable for
the task of kernel estimation.

We study on the statistics of motion and out-of-focus blur
kernels to find appropriate priors for local blur kernels. We
blur 400 sharp images with out-of-focus and motion blur with
various specifications and estimate the local blur kernels of
the images. Fig. 2 (a-b) and (c-d) plots the pixel value distri-
bution of the out-of-focus and motion blur kernels for various
blur degrees, respectively. Motion blur kernels tend to be s-
parse because most values in the kernel are zeros while out-of-
focus blur kernels have less tendency to be sparse. Although
the kernel sparseness also depends on the blur degree which

means low blur degree kernels are more sparse than high blur
degree images, the motion blur kernels have more tendency to
be sparse than out-of-focus blur kernels. The distribution of
out-of-focus blur kernels are closer to Gaussian while the one
for motion blur kernels are closer to hyper-laplacian. There-
fore, by choosing a prior model closer to Gaussian for out-of-
focus blur kernels and a prior model closer to hyper-laplacian
for motion blur kernels, better results can be achieved.

Generalized Gaussian Distribution (GGD) has been used
extensively to parameterize natural scene statistic of the im-
ages [23]. Since GGD is a parametric family of Gaussian,
laplace and hyper-laplacian distributions, we use the GGD as
the prior model of the local blur kernels. Therefore, prior
model of local blur kernel Ki,j is defined using GGD as

P (Ki,j) = e||Ki,j ||γi,j (2)

where γi,j is the shape-parameter of the distribution [23]. For
different γi,j values, the GGD represents different distribu-
tions. For instance, γi,j = 2 indicates Gaussian, γi,j = 1
represents laplacian and γi,j < 1 depicts hyper-laplacian.

We calculate γi,j of the blur kernel distributions in Fig. 2.
The value of γi,j for out-of-focus blur kernels are (a) 1.3840
and (b) 1.5970 while for motion blur kernels, the γi,j values
are (c) 0.5390 and (d) 0.6010. Since the distributions of out-
of-focus blur kernels are closer to Gaussian, 1 < γi,j ≤ 2
while for motion blur kernels, 0 < γi,j ≤ 1 to be more sparse.

To indicate the value of γi,j for blur kernel prior model,
we propose a method using a set of candidate parametric blur
kernels. In the prior work [24], the shock filter is used for
enhancement of sharp edges from blurred step edges which
has an iterative form as Ft+1 = Ft − sign(∆Ft)||∇Ft||,
where Ft and Ft+1 are the image at iterations t and t + 1,
∆Ft is the Laplacian and ∇Ft is the gradient of Ft. By
assuming F0 = Gi,j , the sharp version of Gi,j denot-
ed as Gs

i,j is estimated. We use a set of candidate motion
blur kernels {Km1

, ...,Kmu
} and out-of-focus blur kernel-

s {Ko1 , ...,Kov} with different specifications to blur Gs
i,j ,

given by

Gp
i,j = Kp ∗Gs

i,j , Kp ∈ {Km1
, ...,Kmu

,Ko1 , ...,Kov}
(3)

Consequently, Gp
i,j ∈ {G

m1
i,j , ..., G

mu
i,j , G

o1
i,j , ..., G

ov
i,j} is the

blurred version of Gs
i,j generated by the set of candidate blur

kernels. The blurred block Gp
i,j with the highest similari-

ty to Gi,j indicates the closest candidate blur kernel to the
actual blur kernel Ki,j . To measure the similarity of Gp

i,j

to Gi,j , we use L1 norm distance dpi,j = ||Gp
i,j − Gi,j ||1.

Therefore, dm1
i,j , ..., d

mu
i,j , d

o1
i,j , ..., d

ov
i,j are the similarity dis-

tances of Gm1
i,j , ..., G

mu
i,j , G

o1
i,j , ..., G

ov
i,j to Gi,j , respectively.

The minimum distance of dm1
i,j , ..., d

mu
i,j denoted as dm

′

i,j and
do1i,j , ..., d

ov
i,j indicated as do

′

i,j are used to calculate the proba-
bility that Ki,j is motion or out-of-focus blur kernel defined
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Fig. 2. Pixel value distributions of (a-b) out-of-focus blur kernels and (c-d) motion blur kernels with various specifications.

as

Pm(Ki,j) =
do
′

i,j

do
′

i,j + dm
′

i,j

, Po(Ki,j) =
dm
′

i,j

do
′

i,j + dm
′

i,j

(4)

If dm
′

i,j = do
′

i,j , Pm(Ki,j) = Po(Ki,j) = 1
2 . If dm

′

i,j < do
′

i,j ,
0 < Pm(Ki,j) <

1
2 < Po(Ki,j) < 1 and for dm

′

i,j > do
′

i,j ,
0 < Po(Ki,j) <

1
2 < Pm(Ki,j) < 1. Following the study on

the shape-parameter, if Pm(Ki,j) > Po(Ki,j), 0 < γi,j ≤ 1
and for Pm(Ki,j) < Po(Ki,j), 1 < γi,j ≤ 2. Therefore,
we define γi,j for local blur kernels Ki,j using Po(Ki,j) or
Pm(Ki,j) as

γi,j = 2Po(Ki,j) = 2(1− Pm(Ki,j)) (5)

2.2. Local Blur Kernels Similarity-Based Clustering

For blur kernel estimation, it is usually advantageous to use
larger region of the blurred image to increase the accuracy
of blur kernel. However, the blur in the region should be in-
variant in terms of type to achieve better result in blur kernel
estimation. In this step, the image blocks with similar blur
kernels are clustered together to generate space-invariant blur
type regions. We use k-means clustering by incorporating the
intensity of local blur kernels pixels and the coordinates of the
image blocks in the image as the input features.

Given a set of local blur kernelsK1,1,K1,2, ...,KbML c,b
N
L c

of an image where M × N and L × L are the size of
image and image blocks, respectively. The feature vec-
tor of the clustering is defined as a d-dimensional vector
including pixel intensity of the local blur kernels and the
coordinates (i, j) of the image blocks. For local blur ker-
nels with size of κ × κ and (i, j) as horizontal and ver-
tical coordinates in the image, we define the feature vec-
tor V = [Ki,j(1, 1),Ki,j(1, 2), ...,Ki,j(κ, κ), i, j] with
d = κ × κ + 2 features as the input. The k-means clustering
partitions the image blocks into s regions R1, R2, ..., Rs to
minimize the within-cluster sum of squares between pixels of
kernels where s is the number of clusters.

2.3. Region Blur Type Classification for Image Tamper-
ing Detection

After segmentation of the image G into s regions, the image
is represented by s layers formation model as G = η1×R1 +
...+ ηs × Rs, where R1, ..., Rs are the regions and η1, ..., ηs

are the binary masks representing the regions. By representa-
tion of the image G with s layers model, the image blurring
process in Eq. 1 is formulated as G = η1× (I1 ∗K1 +N1) +
... + ηs × (Is ∗ Ks + Ns), where K1, ...,Ks are the blur k-
ernels of s regions R1, ..., Rs. To identify the blur type of
the regions, a minimum distance classifier is used to measure
the normalized cross-correlation proposed in [25] of the esti-
mated blur kernels K1, ...,Ks and a set of candidate motion
blur kernels {Km1 , ...,Kmu} and out-of-focus blur kernels
{Ko1 , ...,Kov} with different specifications. Finally, a hu-
man evaluation is needed to detect any inconsistency between
the blur type and the image regions. For instance, if a region
of the image has hand shake motion blur and another region
has out-of-focus, this is an inconsistency in the blur types.

3. RESULTS AND DISCUSSION

In this section, firstly we compare our method with some of
the state-of-the-art techniques in partial blur type detection
and classification proposed by Chen et al. [16], Su et al [18]
and Aizenberg et al. [19]. For the experiments, we define
{Km1 , ...,Kmu} as the set of candidate motion blur kernels
where the length is increased from 2 to 40 pixels and the an-
gle is increased from 0 to 180 degree with the step of 1, and
{Ko1 , ...,Kov} as the set of out-of-focus blur kernels where
the radius is increased from 2 to 40 with the step of 0.1. We
set up datasets of blurred images by collecting 400 out-of-
focus and motion blurred images from Flicker photo sharing
website [26]. The images are partitioned into blocks and the
out-of-focus and motion blurred image blocks are manually
selected as the ground-truth. We select 2000 blurred blocks
(1000 motion and 1000 out-of-focus) with size of 64 × 64,
1000 blurred blocks (500 motion and 500 out-of-focus) with
size of 128×128 and 600 blurred blocks (300 motion and 300
out-of-focus) with size of 256× 256.

We compare our method with Chen et al. [16], Su et al.
[18] and Aizenberg et al. [19] to classify natural out-of-focus
and motion blurred blocks. We define two classes including
out-of-focus blur as positive class and motion blur as negative
class. Therefore, true positive rate (TPR) is the fraction of
out-of-focus blurred blocks that are correctly classified as out-
of-focus blur and true negative rate (TNR) is the fraction of
motion blurred blocks that are correctly classified as motion
blur. Accuracy is defined as the number of correctly classified
blocks over the number of all blocks. Table 1 compares the
performance of methods. Although, by increasing the block
size from 64×64 to 256×256, the accuracy of all methods is

2675



Table 1. Comparison of methods for classification of out-of-focus
and motion blurred blocks

Approach Block Size TPR TNR Type I Type II Accuracy
Error Error

(%) (%) (%) (%) (%)
Chen 64× 64 76.7 71.1 23.3 28.9 74.5

et al. [16] 128× 128 79.3 80.5 20.7 19.5 80.3
256× 256 79.1 77.2 20.9 22.8 78.4

Su 64× 64 71.1 69.5 28.9 30.5 70.4
et al. [18] 128× 128 72.2 71.8 27.8 28.2 72.6

256× 256 76.6 80.7 23.4 19.3 78.0
Aizenburg 64× 64 32.3 44.2 67.7 55.8 40.6
et al. [19] 128× 128 75.8 71.4 24.2 28.8 74.3

256× 256 85.3 80.5 24.7 19.5 83.7
Proposed 64× 64 91.5 88.7 8.5 11.3 90.2
Method 128× 128 94.3 89.3 5.7 10.7 92.5

256× 256 97.9 92.4 2.1 7.6 95.4

increased, the results show that our method outperforms the
results of prior works for all block sizes.

Next, we analyze our proposed method for image splic-
ing detection. We consider the scenario that the original im-
age and the spliced region have different blur types. For in-
stance, original image has motion blur due to hand shake or
camera motion while the spliced region has out-of-focus blur.
We set up a dataset of tampered images exhibiting blur type
inconsistency by replacing the central region of 200 out-of-
focus blurred images with motion blurred regions and the cen-
tral region of 200 out-of-focus blurred images with motion
blurred regions. The size of tampered region is 128 × 128
and 256 × 256. To measure the performance, the ground
truth of the blur types are used. Since some of the images
may have sharp regions, we use the method in [27] in ad-
vance to discriminate blur/sharp areas. We define two classes
including tampered region as positive class and authentic re-
gion as negative class. Table 2 shows the performance of our
method for tampered region detection with size of 128× 128
and 256× 256.

Fig. 3 (a) shows an authentic motion blur image and Fig. 3
(b) is a tampered image generated by splicing an out-of-focus
blurred region into the image (a). Fig. 3 (c) and (d) shows
the discrimination results of the image (a) and (b) into three
regions after local blur kernel estimation and clustering. After
final blur type classification of the regions, the blur type of
three regions in (c) is detected as motion blur. This reveals
that there is no inconsistency in the blur types. The regions
in (d) have different blur types including motion and out-of-
focus blur. The region in the top left corner has out-of-focus
blur while the other two regions have motion blur. This is
an inconsistency in the blur type of the image because there
is no motion object in the image and all regions should have
the same blur type. This inconsistency in the blur type of the
regions is an evidence of image tampering.

3.1. Cluster Number Selection

We study on the effect of number of clusters on the accuracy
of tampered region detection. Consider an image with partial
out-of-focus and motion blur types. If we select two clusters

Table 2. Tampering detection performance of our method
Tampered Region TPR TNR Type I Error Type II Error Accuracy

Size (%) (%) (%) (%) (%)
128× 128 83.0 85.5 17.0 14.4 85.4
256× 256 88.0 94.5 12.0 5.4 93.6

(s = 2), the image blocks are categorized into two regions
with out-of-focus and motion blur types. By increasing the
number clusters (s > 2), the image blocks are categorized not
only based on the blur type but also based on the blur degree
and the image content. For example, if two regions in the
image have different motion directions, the motion blurred
blocks are categorized into different clusters. However, since
in the last part of our proposed approach we estimate the blur
kernels of the regions, the kernels estimated from the regions
are classified into out-of-focus or motion blur types.

(a) (b)

(c) (d)
Fig. 3. (a) An authentic motion blurred image. (b) A tampered
image generated by splicing an out-of-focus blurred region into the
image (a). (c) and (d) show three regions as the result of clustering
of the images (a) and (b), respectively.

4. CONCLUSION

A novel method for image tampering detection was proposed
based on partial blur detection and classification. The input
image was partitioned into blocks and the prior models of the
image blocks were predicted to use in the local blur kernel
estimation. Then, the local blur kernels of image blocks were
estimated and a clustering method was used to categorize the
image blocks with similar blur kernels into different region-
s. Finally, the blur kernels of the clusters were estimated and
the clusters were classified into the different blur types. The
experimental results showed that the proposed method could
be used successfully for image splicing detection. In the cur-
rent work we assumed simple form of blur kernels including
uniform motion blur and symmetric out-of-focus blur which
is correct for most cases. However, for some cases the blur
kernel may have complex forms. In the future, more com-
plicated forms of blur kernels, blur kernel analysis and blur
kernel accuracy measurement will be done to improve the re-
sult of tampering detection.
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