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ABSTRACT

This paper investigates spectral filtering using isotropic spectral win-
dows, which is a computationally efficient method of spatial smooth-
ing on the sphere. We propose a Slepian eigenfunction window,
which is obtained as a solution of the concentration problem on the
sphere, as a good choice of the window function. We also unify
a comprehensive set of quantitative tools, both spatial and spectral,
to assess and compare the performance of different smoothing win-
dows (i.e., smoothers). We analyze and compare the performance
of the proposed window against the two best available candidates in
the literature: von-Hann window and von Mises-Fisher distribution
window. We establish that the latter window includes the popular
Gauss window as a subcase. We show that the Slepian eigenfunction
window has the smallest spatial variance (better spatial localization)
and the smallest side-lobe level.

Index Terms— 2-sphere; unit sphere; windows; convolution;
smoothing; spherical harmonic transform.

1. INTRODUCTION

Signals are naturally defined on the 2-sphere in a variety of sci-
ence and engineering disciplines including geodesy [1, 2], cosmol-
ogy [3], biomedical imaging [4], and wireless channel modeling [5].
Smoothing of such signals in the spatial domain, for noise reduc-
tion or for band-limiting the signal, is often carried out as isotropic
convolution [1–4, 6–8], which corresponds to the windowing of the
signal in the spectral domain. The choice of the window function is,
therefore, crucial in the smoothing process.

1.1. Relation to Prior Work

Many window functions have been proposed for spatial smooth-
ing of signals on the sphere, either in the spatial or the spectral
domain [1–4, 7]. Ideally, the window should be (i) a rectangular
shape (sharp cut-off) in the spectral domain such that complete in-
formation is preserved while band-limiting the signal and (ii) a Dirac
delta in the spatial domain to avoid accumulation of the signal at each
spatial position from the neighbouring signal components. How-
ever, these ideal characteristics in both the spatial and the spectral
domains cannot be achieved simultaneously by virtue of the uncer-
tainty principle. Hence, smoothed or tapered spectral windows are
often used in practice. For example, the Gauss window has been
used in geodesy for isotropic smoothing of gravity data observed
over the sphere [1, 2]. The von Mises-Fisher distribution window
has been used to perform isotropic convolution for smoothing cos-
mological observations [3]. Furthermore, Guass-Weistrass window
is used for diffusion-based spatial smoothing over the sphere [7] and
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for smoothing of cortical surfaces in biomedical imaging [4], where
it has been termed as the heat kernel.

Recently, spatial and spectral measures to compare the perfor-
mance of different spectral windows were proposed in [8] and it was
shown that the von-Hann window serves as a good choice for spec-
tral windowing. However [8] analysed the window functions popular
in geodesy by adapting the measures of performance in [9] and did
not consider some other measures [4, 10] and windows [3, 7].

1.2. Contributions

In this work, we propose to use the suitably selected eigenfunction
window for isotropic convolution (spectral windowing). The pro-
posed window is obtained as a solution of Slepian concentration
problem on the sphere [11–13]. We also unify the different figures
of merit in the literature to measure and analyse the performance
of different smoothing windows (i.e., smoothers). We analyse the
von-Hann, von Mises-Fisher distribution (Gauss) and eigenfunction
windows and show that the proposed eigenfunction window serves
as a better choice in terms of a number of spatial and spectral perfor-
mance measures.

The paper is organized as follows. The mathematical back-
ground and window functions are reviewed in Section 2. The prob-
lem statement is defined in Section 3. The measures for quantifying
the performance of the smoothers are presented in Section 4. The
results are discussed in Section 5.

2. PRELIMINARIES

2.1. Signals and Systems on the 2-Sphere

We consider the complex Hilbert space finite energy functions on
the 2-sphere, L2(S2), which is equipped with the following inner
product

〈f, h〉 �
∫
S2

f(x̂)h(x̂) ds(x̂), (1)

where x̂ ≡ x̂(θ, φ) � (sin θ cosφ, sin θ sinφ, cos θ) ∈ R
3

is a unit vector which parameterizes a point on the 2-sphere, S2,
ds(x̂) = sin θ dθ dφ and (·) denotes complex conjugate. θ ∈ [0, π]
denotes the co-latitude measured with respect to the positive z-axis
and φ ∈ [0, 2π) denotes the longitude measured with respect to the
positive x-axis in the x-y plane. The inner product in (1) induces a
norm ‖f‖ � 〈f, f〉1/2, and the functions with finite induced norm
are referred as signals on the 2-sphere in this paper.

Spherical harmonics [14] defined for integer degree � ≥ 0 and
integer order m ∈ [−�, �] form archetype complete orthonormal set
of basis functions for L2(S2) and are expressed as follows

Y m
� (θ, φ) �

√
2�+ 1

4π

(�−m)!

(�+m)!
Pm
� (cos θ)eimφ ≡ Y m

� (x̂),
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f(x̂) h(x̂) g(x̂) = (h� f)(ŷ)

(f)m� H� (g)m� = H� (f)
m
�

Fig. 1: Isotropic convolution (upper) and spectral smoothing (lower).

where Pm
� denotes the associated Legendre function [14]. By com-

pleteness of spherical harmonics, we can expand any signal f ∈
L2(S2) as

f(x̂) =
∞∑
�=0

�∑
m=−�

(f)m� Y m
� (x̂), (f)m� � 〈f, Y m

� 〉, (2)

where (f)m� denotes the spherical harmonic Fourier coefficient of
degree � and order m. The signal f is said to be band-limited at
degree L if (f)m� = 0, ∀� > L.

A signal h(x̂) is said to be azimuthally symmetric when h(x̂) =
h(θ, φ) = h(θ)). The set of azimuthally symmetric functions of the
form h(x̂) = h(θ, φ) = h(θ) forms a subspace of L2(S2) and is
denoted by H0. Define the rotation operator D(ŷ) with ŷ = ŷ(ϑ, ϕ)
that rotates an azimuthally symmetric function h(x̂) ∈ H0 by ϑ ∈
[0, π] about y-axis followed by ϕ ∈ [0, 2π) about z-axis. Then [14](D(ŷ)h

)m
�

=

√
4π

2�+ 1
Y m
� (ϑ, ϕ)(h)0� , ŷ = ŷ(ϑ, ϕ). (3)

By the spherical harmonic addition theorem [15], the spatial form is(D(ŷ)h
)
(x̂) =

∞∑
�=0

�∑
m=−�

√
4π

2�+ 1
(h)0�Y

m
� (x̂)Y m

� (ŷ)

=
∞∑
�=0

(h)0�

√
2�+ 1

4π
P 0
� (x̂ · ŷ) = h(arccos x̂ · ŷ). (4)

2.2. Isotropic Convolution or Spectral Smoothing

Of the many notions of convolution on the sphere [14, 16] we con-
sider isotropic convolution [3, 7, 17, 18], which is also referred to
as “spectral smoothing” [4, 7, 8]. Define the convolution between
f ∈ L2(S2) and an azimuthally symmetric h ∈ H0 as follows:

g(ŷ) � (h� f)(ŷ) �
∫
S2

f(x̂)
(D(ŷ)h

)
(x̂)ds(x̂), (5)

and in spectral form, depicted in Fig. 1,

(g)m� =

√
4π

2�+ 1
(h)0�︸ ︷︷ ︸

� H�

(f)m� , (6)

which makes it evident that “spectral smoothing” is taking place, at
least when the H� are all positive. The H� characterize the spectral
window and we present a number of examples next.

2.3. Basic Smoothers and Spectral Windows

In the literature either the spatial form, (5), or the spectral form, (6),
of a smoothing operator is given in closed-form as revealed in our
following list. (A closed-form spatial form may not have a closed-
form spectral form and vice versa.)

Rectangular Window (Spectral): This window performs spectral
truncation up to an including band-limit parameter L:

H�(L) =

{
1 � ∈ {0, 1, . . . , L}
0 otherwise,

(7)

which has unit energy normalization
Gauss Window (Spatial): Gauss window has been used for

smoothing gravity models in geophysics [1, 2] and is defined as
follows:

h(θ; θFWHM) = b
e−b(1−cos θc)

1− e−2b
, b =

ln 2

1− cos θFWHM
(8)

where the parameter θFWHM > 0 indicates the degree of smoothness.
von-Hann Window (Spatial): The von-Hann window, commonly

know as Hanning window or raised cosine window in Euclidean do-
main [9], is defined in terms of the width of the main lobe θc as
follows:

h(θ; θc) =

{
1
2

(
1 + cos(πθ/θc)

)
0 ≤ θ ≤ θc

0 otherwise.
(9)

von Mises-Fisher Distribution Window (Spatial and Spectral):
The von Mises-Fisher distribution window (or von Mises-Fisher
window) has been used in literature for isotropic smoothing in cos-
mology [3] and is defined for the concentration parameter κ ≥ 0
with known spectral domain representation [19]

h(θ;κ) � κ exp(κ cos θ)

4π sinhκ
, H�(κ) =

I�+1/2(κ)

I1/2(κ)
, (10)

where I�+1/2(·) denotes half-integer-order modified Bessel function
of the first kind. We observe that, in fact, the von Mises-Fisher dis-
tribution window and the Gauss window are identical when κ = b.

Gauss-Weierstrass Window (Spectral): This window has the fol-
lowing spectral characterization for κ ≥ 0

H�(κ) = e−�(�+1)/(2κ) (11)

has been used for spherical diffusion [7] and also for spectral
smoothing of cortical surfaces [4]. We note that the Gauss-
Weierstrass window is an asymptotic form of the von Mises-Fisher
distribution window for large values of the parameter κ [3].

2.4. Slepian Eigenfunction Window

With two parameters, the band-limit L and angular size θc, one can
solve a Slepian concentration problem on the sphere, which finds
the band-limited function that maximizes the proportion of energy
that falls within the polar cap region θ ∈ [0, θc], see [11–13]. This
function is the eigenfunction with the largest eigenvalue of an asso-
ciated integral equation. Generally the concentration is high (close
to unity) unless both L and θc are simultaneously too small. The
specific “Slepian eigenfunction window” we refer to in this section
is one where both L and θc are simultaneous as small as possible in
the following sense:

θc =
2π

L+ 1
. (12)

for which it can be established that one eigenfunction is at least 99%
concentrated [12, 20]. Therefore, using (12) we have a one param-
eter “eigenfunction window” family parametrized (without loss of
generality) by L.

The eigenfunction window h ∈ H0 with band-limit L and en-
ergy concentration within cap angle θc, given in (12), can be com-
puted in spectral domain as a solution of following algebraic eigen-
value problem [12, 20]

Dh = λh, (13)

where h = [(h)00, (h)
0
1, . . . , (h)

0
L] and D is the (L + 1) × (L + 1)

real and symmetric matrix with entries given by

D�,�′ = 2π

∫ θc

0

Y 0
� (θ, 0)Y

0
�′(θ, 0) sin θ dθ, (14)
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which can be computed analytically [12], however, requires the com-
putation of Wigner-3j symbols [21]. Alternatively, the eigenvalue
problem in (13) can be solved as an eigen decomposition of the ma-
trix G of size (L + 1) × (L + 1) that commutes with D, that is,
DG = GD. It has been shown that G is a tridiagonal matrix with
entries of the form [13]

G�,�+1 = G�+1,� =
(�+ 1) (�(�+ 2)− (L)(L+ 2))√

(2�+ 1)(2�+ 3)
,

G�,� = −�(�+ 1) cos(θc), G�,�′ = 0. (15)

Since G is a tridiagonal matrix with simple entries given in (15), its
eigen decomposition can be easily obtained and gives L + 1 eigen-
vectors of the form h and the one with the smallest eigenvalue yields
the spectral domain representation of the desired eigenfunction win-
dow. This procedure furnishes (h)0� which are readily scaled to give
the H� shown in (6) and Fig. 1. Neither the spatial form, (5), nor the
spectral form, (6), of a smoothing operator are closed-form but can
be easily obtained by the eigen decomposition of G.

3. PROBLEM STATEMENT

Isotropic convolution or spectral smoothing are used to reduce the
effects of noise [2], to perform basic low-pass filtering such as form-
ing a band-limited representation of signal and to perform spatial
smoothing. For example, rectangular window (7) can be used to
band-limit a signal at degree L. However, the choice of such a rect-
angular window produces ringing artifacts (due to the Gibb’s phe-
nomenon [22]) in the spatial domain as noted in [4]. This highlights
the need to find objective measure to assess performance and com-
pare different designs for smoothers.

In summary our problem addresses the following issues:

1. to use and develop quantitative tools [8] to quantify smoother
performance on the 2-sphere;

2. to implement and assess the performance of the eigenfunction
window as a smoother; and

3. to compare the eigenfunction window with smoothers from
the literature, [1–4, 7, 8], and Section 2.3.

4. MEASURE FOR QUANTIFYING PERFORMANCE

We categorize measures for quantifying performance into spectral
and spatial measures depending on the domain under study. In the
derivation of these measures, we assume that the window function
under analysis unit energy normalized, that is,

2π

∫ π

0

∣∣h(θ)∣∣2 sin θ dθ = 1⇐⇒
∞∑
�=0

∣∣h�

∣∣2 =

∞∑
�=0

2�+ 1

4π

∣∣H�

∣∣2 = 1.

4.1. Spectral Measures

Spectral Variance: Spectral variance quantifies the spread of the
spectral window in the spectral domain. Mathematically, the vari-
ance of the window function h ∈ H0 in the spectral (Fourier) do-
main, denoted by σF , is defined as [10]

σ2
F = 4π

L∑
�=0

�(�+ 1)

2�+ 1

∣∣H�

∣∣2. (16)

Since the windowing is applied in spectral domain, a superior win-
dow should have large spectral variance for a given band-limit L of
the window function.
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Fig. 2: von Mises-Fisher, von-Hann, rectangular and the eigenfunc-
tion windows are plotted in spatial and spectral domains as (a) h(θ)
and (b) H� respectively. The band-limit for each window is L = 14
and the common spectral variance is σF = 36.0980.

Processing Loss: Due to the smoothness imposed by the spectral
window, there is information loss in the spectral domain. We quan-
tify such processing loss for a window with band-limit L as [9]

β =
( L∑
�=0

H�

)2
. (17)

The higher the value of β for a given window, the lower the process-
ing loss due to smoothness of the spectral window.

4.2. Spatial Measures

Since the spectral windowing of the signal with H� is a consequence
of convolution of the signal with a signal h(x̂), we identify the major
characteristics of the window function in the spatial domain that will
allow us to compare the performance of different windows.

Spatial Variance: The spatial variance serves as a measure of spa-
tial localization or peakiness of the window function around its cen-
ter (usually taken as the north pole). Mathematically define spatial
variance σ2

S as [10, 20]

σ2
S = 1−

(
π

∫ π

0

sin(2θ)
∣∣h(θ)∣∣2 dθ)2

. (18)

The smaller value of spatial variance indicates more localization of
the window function in the spatial domain, which implies the better
performance as this minimizes the accumulation of different signal
components.

Full-Width at the Half-Maximum (FWHM): Let FWHM be de-
noted by θFWHM and defined as the width from the center (usually
θ = 0) where the function h(x̂) attains the maximum value, that is,

h(θFWHM) =
1

2
h(0)
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Fig. 3: (a) Processing loss β, (b) spatial variance σS , (c) side-lobe
level α for windows with band-limits in the range 10 ≤ L ≤ 22.

It is a measure of localization of window function and is sometimes
referred as 3dB width of the window function [4]. If the separation
between the two same strength signal components in the spatial do-
main is less than twice of FWHM, the two components appear as a
single component and will not be resolved in the smoothed signal.

Main-Lobe Energy and Energy Leakage: Main-lobe energy, de-
noted by Em, and energy leakage, denoted by Es, are defined as the
energy in the main lobe parameterized by θc and the energy outside
the main lobe respectively, that is,

Em = 2π

∫ θc

0

∣∣h(θ)∣∣2 sin θ dθ, Es = 1− Em. (19)

The larger value of Em indicates better performance.
Side-lobe Level: Side-lobe level is defined as the magnitude of the

highest side-lobe. This is an important measure as it quantifies the
accumulation of the largest unwanted contribution outside the main-
lobe. We use α to denote the magnitude of the highest side-lobe.
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Fig. 4: The trade-off (quantified by the slope) between spatial vari-
ance σS and side-lobe level α. The right and left markers denote
the windows with L = 14 and L = 64, respectively. The radius of
marker is proportional to the width of the main-lobe and the value in
brackets indicates the main-lobe energy concentration Em.

5. PERFORMANCE COMPARISON

Fair Comparison Strategy: Here we use the measures defined in
Section 4 to compare the performance of the von Mises-Fisher, von-
Hann, rectangular and the eigenfunction windows (as the von Mises-
Fisher distribution and Gauss window are equivalent and the Gauss-
Weierstrass asymptotically equivalent). Since the windows are de-
fined by different parameters, we devise the following strategy in or-
der to carry out meaningful comparison: 1) for given L, determine θc
using (12) and determine the eigenfunction window; and 2) choose
parameters of von Mises-Fisher distribution window and von-Hann
window such that each window function, when band-limited at L,
is unit energy normalized and has the spectral variance σF equal to
that of eigenfunction window.

Analysis Results: For L = 14, the different windows are plotted
in Fig. 2(a) and (b) in spatial domain as h(θ) and spectral domain
as H� respectively. It is evident that the eigenfunction window has
better spatial localization and smaller side-lobe level.

We compare the processing loss (β), spatial variance (σS) and
side-lobe level (α) for windows with band-limits in the range 10 ≤
L ≤ 22 in Fig. 3(a), (b) and (c) respectively. von Mises-Fisher dis-
tribution window has the higher (better) processing loss. However,
the processing loss does not vary with the band-limit. The eigen-
function window has the smallest spatial variance (better spatial lo-
calization) and the smallest side-lobe level.

In order to further study the trade-off between spatial variance
and side-lobe level, we plot the spatial variance versus side-lobe
level in Fig. 4 for different windows, where it can be observed that
eigenfunction window has better performance as compared to the
von-Hann window and von Mises-Fisher distribution window.

6. CONCLUSIONS

In this work, we have categorised the different figures of merit to
compare the performance of different spectral windows for spatial
smoothing. Based on the comparison with other windows: von-
Hann and von Mises-Fisher (Gauss), we have proposed the use of
eigenfunction window, obtained as a solution of Slepian concentra-
tion problem on the sphere. We have shown that the eigenfunction
window is more localized in spatial domain and also exhibits the
smaller side-lobe level and therefore reduces the accumulation of
different signal components in the spatial domain.
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