
FFT BASED SOLUTION FOR MULTIVARIABLE L2 EQUATIONS USING KKT SYSTEM VIA
FFT AND EFFICIENT PIXEL-WISE INVERSE CALCULATION

Keiichiro Shirai

Shinshu Univ.
Masahiro Okuda

Univ. of Kitakyushu

ABSTRACT

When solving l2 optimization problems based on linear filtering with
some regularization in signal/image processing such as Wiener filter-
ing, the fast Fourier transform (FFT) is often available to reduce its
computational complexity. Most of the problems, in which the FFT
is used to obtain their solutions, are based on single variable equa-
tions. On the other hand, the Karush-Kuhn-Tucker (KKT) system,
which is often used for solving constrained optimization problems,
generally results in multivariable equations.

In this paper, we propose a FFT based computational method for
multivariable l2 equations. Our method applies a FFT to each block
of the KKT system, and represents the equation as an image-wise
simultaneous equation consisting of Fourier transformed filters and
images. In our method, an inverse matrix calculation that consists
of complex pixel values gathered from each transformed image is
required for each pixel. We exploit the homogeneity of neighboring
values and solve them efficiently.

Index Terms— Optimization, regularization, inverse problem,
KKT system, fast Fourier transform

1. INTRODUCTION

In the calculation of filtering used in image processing, mainly three
types of forms are used: (i) matrix form Ax=b denoted by the ma-
trix multiplication of a filter matrix A and vectorized images x and
b; (ii) filter form A ⊗X=B denoted by the convolution of a filter
kernel A and images X and B, and (iii) a form using the fast Fourier
transform (FFT) F (A) ◦ F (X) = F (B) denoted by Hadamard
product (pixel-wise multiplication) of the FFTed filter F (A) and
FFTed images F (X) and F (B). In particular, they are completely
compatible if the matrix A has a structure called block circulant with
circulant blocks (BCCB). In short, convolution with circular bound-
ary padding is defined as

Ax=b ↔ A⊗X=B ↔ F (A)◦F (X)=F (B). (1)

The calculation efficiency increases from left to right especially for
long filters since they utilize the feature of matrix structure and can
be regarded as specialized (pre-conditioned and diagonalized) ones
of the matrix form.

The well known filter formula using the correspondences is the
Weiner filter [1], and its calculation is generally performed in the
frequency domain. It is, however, difficult to apply the filter form
directly to ill-posed problems such as deblurring because the matrix
A often becomes singular and it causes zero division 1/F (A) in the
frequency domain, which results in artifacts on resulting images. On
the other hand, the development of regularization using image fea-
tures and the convex optimization algorithms [2, 3] changes the sit-
uation because the well regularized matrix A becomes non-singular
and its FFT form does not generate the artifacts. Thus, the FFT form
is used in many methods, e.g., deblurring [4] and smoothing [5].

The aforementioned methods [1, 4, 5] handle l2 equations with a
single variable. When the equations with two or more variables such
as Lagrangian multipliers used in the above optimization algorithm
[3], the matrix form is usually employed, and the multiple variables
are concatenated into the single variable using a direct product ex-
pression that is called Karush-Kuhn-Tucker (KKT) system [6, 7]. In
this case, the matrix A does not hold the BCCB structure, and thus
the FFT form is not directly applicable to the calculation. In the
optimization algorithms, usually we have to solve this l2 equation
iteratively. Thus applying the FFT will significantly reduce the total
executing time.

In this paper, we propose an efficient calculation method for
multivariable l2 equations using FFT form. We utilize an assump-
tion that the block components of a KKT system holds the BCCB
structure, and represent its block-wise matrix multiplication using
FFT form. As a result, a simultaneous equation using FFTed images
is obtained. Solving this equation and then performing the inverse
FFT, we can solve the KKT system efficiently. In our method, the
inverse matrix calculation that consists of complex pixel values gath-
ered from each transformed image is required for each pixel. To
solve them efficiently, we utilize the homogeneity of neighboring
values. Our approach is actually the same as that used in 1D sig-
nal source separation in the frequency domain [8, 9], however our
method can handle more general l2 equations, and the computational
method is further considered.

2. SINGLE VARIABLE L2 EQUATION IN FFT FORM

In this section we describe a typical example of an inverse calcula-
tion in FFT form using Tikhonov regularization [10].

First we show correlation that forms a counterpart to the convo-
lution shown in (1):

ATx=b ↔ A∗⊗X=B ↔ F (A)◦F (X)=F (B), (2)

where A∗ is the 180◦ rotated mirror kernel of A1, and F (·) is the
conjugate of F (·). Using this relationship, for example, a forward
differential filter in the convolution A := [1,−1, 0] gives the corre-
sponding differential operator in the correlation A∗ :=[0,−1, 1].

As a typical example of a single variable l2 equation, we show
the FFT form of a Tikhonov regularized equation [10]:

arg min
x

‖Ax− b‖22 + λ‖Γx‖22, (3)

where x∈RN is a vectorized image of N pixels, A and Γ∈RN×N

are filter matrices2, and ‖x‖p :=(
∑

i |xi|p)1/p denotes lp norm. The

1This notation is corresponding to correlation A∗⊗X =A ∗ X , where
convolution is defined as (f ⊗ g)(x)=

∑
u f(u)g(x − u) and correlation

is defined as (f ∗g)(x)=
∑

u f(u)g(x+ u).
2In a case of deblurring, Gaussian filter matrix and Laplacian filter matrix

are typically used for A and Γ respectively.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2648

second term is a regularizer that indicates a constraint ‖Γx‖22≤ε and
also guarantees the solution of the inverse calculation. The solution
in matrix form is obtained by setting the first-order derivative w.r.t.
x to zero:

x = (ATA+ λΓTΓ)−1ATb. (4)

The corresponding FFT form is written as(
F (A)◦F (A) + λF (Γ)◦F (Γ)

)
◦F (X) = F (A)◦F (B),

X = F−1

(
F (A)◦F (B)

F (A)◦F (A) + λF (Γ)◦F (Γ)

)
,

(5)

where F−1(·) is the inverse FFT. The shape of (5) is of the same
form as the Wiener filter [1].

3. MULTIVARIABLE L2 EQUATION IN FFT FORM

We describe our method in this section. First we show an exam-
ple of a KKT system [6, 7], and then describe its FFT form and our
pixel-wise inverse calculation [11] that uses propagation based ma-
trix inversion.

3.1. Representation in Karush-Kuhn-Tucker system

As an example of a multivariable l2 equation, we consider the fol-
lowing problem with a constraint:

arg min
x,y

1
2
‖Ax− y‖22 s.t. Γx = b, (6)

where y and b ∈ RN are vectorized images. Note that this equa-
tion has two variables x and y. To solve this problem, typically the
method of Lagrange multipliers is employed:

arg min
x,y,z

(
L(x,y, z) = 1

2
‖Ax− y‖22 + zT (Γx− b)

)
, (7)

where the dual variable z∈RN called Lagrange multiplier is newly
added and three variables are used in total. To solve this equation,
the KKT system is available. First the derivatives of (7) w.r.t. x, y,
and z are set to zero:

∂L/∂x → AT (Ax− y) + ΓT z = 0,
∂L/∂y → −(Ax− y) = 0,
∂L/∂z → Γx− b = 0.

(8)

Then a direct product is expressible by concatenated variables r =
[xT ,yT , zT]T , and (8) is combined to yield the KKT system:ATA −AT ΓT

−A IN 0
Γ 0 0

x
y
z

 =

ATy
0
b

, (9)

where IN ∈RN×N is an identity matrix. This equation can be re-
garded as Pr=q with a symmetric structure PT =P, and solved by
r = P−1q using basic solvers such as the conjugate gradient [12].
Note that since P no longer holds the BCCB structure, FFT based
methods are not directly available.

3.2. Simultaneous equation in the Frequency domain

We consider solving (9) in FFT form and generalize (9) to M -variable
equations as 

P11 P12 · · · P1M

P21 P22 · · · P2M

...
...

. . .
...

PM1 PM2 · · · PMM




r1
r2
...

rM

 =


q1

q2

...
qM

. (10)

The block elements Pij ∈RN×N indicate BCCB filter matrices, and
the block elements qi and ri ∈RN indicate the vectorized images.
Thus FFTs are applicable to each block and their multiplications are
expressible using Hadamard product of Fourier coefficient images
with complex pixel values:

F (P11) F (P12) · · · F (P1M)
F (P21) F (P22) · · · F (P2M)

...
...

. . .
...

F (PM1) F (PM2) · · · F (PMM)

 ?


F (R1)
F (R2)

...
F (RM)

=


F (Q1)
F (Q2)

...
F (QM)

, (11)

where [A,B] ? [C,D]T = A ◦C+B ◦D indicates the pixel-wise
calculation akck+ bkdk at each pixel k. Now we reformulate the
matrix form (11) to pixel-wise equations. The k-th pixel values in
the FFTed images of the (i, j)-th block p̃ij,k = F (Pij)k; and i-th
vectors q̃i,k=F (Qi)k and r̃i,k=F (Ri)k are gathered to construct
a pixel-wise equation:

p̃11,k p̃12,k · · · p̃1M,k

p̃21,k p̃22,k · · · p̃2M,k

...
...

. . .
...

p̃M1,k p̃M2,k · · · p̃MM,k




r̃1,k
r̃2,k

...
r̃M,k

 =


q̃1,k
q̃2,k

...
q̃M,k

 ,

P̃kr̃k = q̃k.

(12)

When M=2, the solution is obtained using a standard adjugate
method P̃−1

k =adj(P̃k)/det(P̃k), and the corresponding notation in
image-wise calculation as shown in (5) is[

F (R1)
F (R2)

]
=

1

det

[
F (P22) −F (P12)
−F (P21) F (P11)

]
?

[
F (Q1)
F (Q2)

]
, (13)

where det=F (P11)◦F (P22)− F (P12)◦F (P21). Then the final
solution is obtained from the inverse FFT:

R1 = F−1(F (R1)), R2 = F−1(F (R2)). (14)

When M ≥ 4, more efficient solutions such as a method using
Cholesky factorization is required (particularly when handling com-
plex numbers) because the computational complexity of the adjugate
method that includes recursive cofactor expansions is O(S(M)) =
O(M3M !) where S(·) varies depending on the solution, while that
of general solvers are at most O(M3).

3.2.1. Computational efficiency by symmetric block structures and
symmetry of FFTed images

When the block structure is symmetric: {Pij = PT
ji | i < j}, the

FFTs denoted in (11) are required only at the upper (or lower) trian-
gular part since the opposite triangular part is the conjugate of them:
{F (Pij) =F (Pji) | i < j}. The local matrices P̃k also hold that
property and become Hermitian matrices: P̃k = P̃H

k where H de-
notes the conjugate transpose. Thus we can use solvers specialized
for Hermitian matrices instead of general solvers. In this case, the
complexities of the FFTs become O(M(M+1)

2
·N logN).

As for the FFTed BCCB filter matrices, a set of two pixels k and
k′ located at the symmetric quadrants in the frequency domain has
conjugate values, which results in P̃k=P̃H

k′ . In addition, the inverse
of Hermitian matrices are also given as Hermitian P̃−1

k = P̃−H
k .

Thus only a half of quadrants requires the inverse computation, and
their conjugate P̃−1

k = P̃−H
k′ are available to the other quadrants.

The total complexity is estimated as O(M(M+1)
2

N logN ·N
2
S(M)).

2649

3.2.2. Preliminarily explicit computation of inverse matrices

When calculating the equation P̃kr̃k = q̃k just one time, it is better
not to compute the inverse matrix P̃−1

k explicitly. However, when
using iterative methods like the ADMM (described in the latter sec-
tion), we need to solve Eq. (12) iteratively by r̃

(t)
k = P̃−1

k q̃
(t)
k at

each iteration t. In this case, precomputing the inverse matrix P̃−1
k

is efficient because P̃k is generally constant in the iterations.

3.3. Propagation based pixel-wise inverse calculation

To compute the pixel-wise equations (12), we employ our compu-
tational approach described in [11]. In short, to obtain P̃−1

k at the
current pixel, we use the matrix at the preceding pixel: P̃−1

k−1. Our
previous approach uses singular value decomposition (SVD), while
we employ the iterative algorithm [13, 14] for the matrix inversion
in this framework.

The purpose is to compute r̃k = P̃−1
k q̃k at each pixel k by ex-

ploiting the feature of the Hermitian matrix P̃k ∈ RM×M and its
homogeneity among neighboring pixels (e.g., k − 1):{

P̃H
k =P̃k,

P̃k≈P̃k−1 → P̃−1
k ≈P̃−1

k−1,
(15)

For utilizing these properties, we employ an iterative algorithm for
Hermitian matrices [13, 14] that uses an initial inverse matrix Λk

and improves the accuracy of it by

Λ
(t+1)
k := Λ

(t)
k +Λ

(t)
k (IM − P̃kΛ

(t)
k). (16)

If the initial inverse matrix is a good approximation, that is P̃−1
k ≈

Λ
(0)
k , this iteration will converge in a few iterations. Thus we ap-

ply the already computed matrix at the preceding pixel Λk−1 to the
initial matrix at the current pixel Λk:

Λ
(0)
k = Λ

(converged)
k−1 = P̃−1

k−1. (17)

In our implementation, we compute the first inverse matrix Λk=0

at the boundary of an image using Cholesky factorization. The al-
gorithm needs only one or two iterations to converge in practice,
thanks to the strong homogeneity of the spectrum of the FFTed fil-
ters {F (Pij)}3.

4. APPLICATION FOR TGV SMOOTHING

As an application of our proposal, here we describe a smoothing
method using the total generalized variation (TGV) regularization
of the second order [15, 16] and the alternating direction method of
multipliers (ADMM) [3]. The purpose is to solve the bottleneck part
of the multivariable l2 equation in the ADMM.

The formula of smoothing with the TGV regularizer (we use the
matrix form of [16, 17]) is defined as

argmin
x

1
2
‖x− y‖22 + ‖x‖α1,α2

TGV . (18)

The TGV term is defined as

‖x‖α1,α2
TGV := min

Dx=s+t

(
α1‖s‖(2,N)

1,2 + α2‖Gt‖(3,N)
1,2

)
(19)

3Obtained solutions using Λ(converged) are prone to generate small imag-
inary values after the inverse FFT due to computational error. We only use
the real part in this paper.

by introducing auxiliary variables {s, t ∈ R2| Dx = s+ t} that
indicate differentiated values, and using differential filter matrices
for the first-order and second-order derivatives:

D :=

(
Dh

Dv

)
, GT :=

(
Dh Dv 0
0 Dh Dv

)
, (20)

where Dh and Dv∈RN×N are differential filter matrices having the
BCCB structure for horizontal and vertical directions, ‖s‖(M,N)

1,2 =∑N
k=1

√∑M−1
m=0 s2k+mN is a mixed norm.

The ADMM form of (18) is defined as

argmin
x,s

1
2
‖x− y‖22 + α1‖z1‖(2,N)

1,2 + α2‖z2‖(3,N)
1,2

s.t. z1 = Dx− t, z2 = Gt,
(21)

with the use of auxiliary variables z1 ∈ R2N and z2 ∈ R3N . The
augmented Lagrangian used in ADMM is written as

L(x, t, z1, z2,u1,u2) =
1
2
‖x− y‖22

+α1‖z1‖(2,N)
1,2 + (ρ/2)‖Dx−t−z1+u1‖22

+α2‖z2‖(3,N)
1,2 + (η/2)‖Gt−z2+u2‖22,

(22)

where newly introduced variables u1 ∈ R2N and u2 ∈ R3N are
called the scaled dual variable. Then the iterative optimization steps
of ADMM are defined as

{x(t+1), t(t+1)} :=argmin
x,t

L(x, t, z(t)1 , z
(t)
2 ,u

(t)
1 ,u

(t)
2)

z
(t+1)
1 :=argmin

z1
L(x(t+1), t(t+1), z1,u

(t)
1)

z
(t+1)
2 :=argmin

z2
L(x(t+1), t(t+1), z2,u

(t)
2)

u
(t+1)
1 :=u

(t)
1 + (Dx(t+1)−t(t+1)−z

(t+1)
1)

u
(t+1)
2 :=u

(t)
2 + (Gt(t+1)−z

(t+1)
2).

(23)

The minimizations of z1 and z2 are performed by shrinkage for the
mixed norm ‖ · ‖(M,N)

1,2 and the complexities are quite low:

z
(t+1)
1 := Sα1/ρ(Dx(t+1) − t(t+1) + u

(t)
1),

z
(t+1)
2 := Sα2/η(Gt(t+1) + u

(t)
2),

(24)

where the k’th element of the shrinkage function is given by

Sγ(x)k = xk max
{
1− γ

(M−1∑
m=0

x2
k+mN

)−1/2

, 0
}
. (25)

On the other hand, the calculation of the first step in (23) is given as
a multivariable l2 equation, and the calculation cost is much larger
than other steps.

Differentiating (22) w.r.t. x and t, and setting the derivatives to
zeros, we obtain the KKT system as(
IN+ρDTD −ρDT

−ρDT ρI2N+ηGTG

)(
x
t

)
=

(
y + ρDT (z1−u1)

−ρ(z1−u1) + ηGT (z2−u2)

)
.

(26)
Furthermore, we separate these blocks such that they have the BCCB
structures:

DTD=DT
hDh+DT

v Dv=∆, GTG=

(
∆ DvD

T
h

DhD
T
v ∆

)
, (27)

where ∆ indicates the Laplacian filter matrix. Similarly we separate
vectorized images into the unit of image:

t :=[tTh , t
T
v]

T , z1 :=[zT1h, z
T
1v]

T , u1 :=[uT
1h,u

T
1v]

T ,

z2 :=[zT2h, z
T
2d, z

T
2v]

T , u2 :=[uT
2h,u

T
2d,u

T
2v]

T ,
(28)

2650

Table 1. A comparison of execution times of l2 part in TGV smoothing (at each iteration in ADMM).
Method Form Inverse calc. Formula Algorithm time (at 5122pix)

(i) Matrix Implicit Pr=q in (29) by a sparse solver of MATLAB: r=P\q 14.4 sec
(ii) Matrix Implicit Pr=q in (29) by a CG method [12] of MATLAB: r=pcg(P,q) 2.2 sec
(iii) FFT Implicit ∀k, P̃kr̃k= q̃k Cholesky decomp. by LAPACK: zpotrs 324 msec
(iv) FFT Explicit ∀k, q̃k=adj(P̃k)/det(P̃k)q̃ Adjugate method 251 msec
(v) FFT Explicit ∀k, q̃k=P̃−1

k q̃k Cholesky decomp. by LAPACK: zpotri 378 msec
(vi) FFT Explicit ∀k, q̃k=Λ

(converged)
k q̃k Our method in Sec. 3.3 (1 teration) 177 msec

(vii) FFT Explicit ∀k, q̃=Λ
(pre-computed)
k q̃k Pre-comput. of {P−1

k } in Sec. 3.2.2 98 msec

where subscripts h, d, and v indicates the horizontal, diagonal, and
vertical parts respectively. As a result, we finally obtain the BCCB
blocks in the form of (10) as

P=

IN + ρ∆ −ρDT
h −ρDT

v

−ρDh ρIN + η∆ ηDvD
T
h

−ρDv ηDhD
T
v ρIN + η∆

, r=

 x
th
tv

 ,

q=

 y +ρDT
h (z1h−u1h)+ρDT

v (z1v−u1v)
−ρ(z1h−u1h)+ηDh(z2h−u2h)+ηDv(z2d−u2d)
−ρ(z1v−u1v)+ ηDh(z2d−u2d)+ηDv(z2v−u2v)

.

(29)

The structure of P is symmetric and the diagonal has non-zero val-
ues since identity matrices are embedded. Thus P is non-singular
and the inverse P−1 exists. The pixel-wise matrix P̃k shown in (12)
is also given as a non-singular Hermitian matrix, and thus the pixel-
wise solutions are guaranteed. Fig. 1 shows the spectrum images
of FFTed BCCB filter blocks of P (left) and the results of inverse
computation (right). One can see that those coefficient images have
homogeneity, i.e., the pixel values are changing gradually.

5. EXPERIMENTAL RESULTS

The results of TGV smoothing described in the previous section are
shown here. As for images, the color intensities are normalized to
the range [0, 1], and here we show the result of an image of 512×
512 size. The complexity of the matrix form O(S(N)) drastically
increases associated with the image size, while that of the FFT form
is O(M(M+1)N2

4
logN ·S(M)),M �N (see Sec. 3.2 and 3.2.1).

The main difference comes from the complexity of S(·).
Table 1 shows a comparison of execution times with principal

methods provided as functions of MATLAB and LAPACK [19]4.
The execution times of the FFT form methods contain pixel-wise
3×3 inverse computation for all the pixels and execution time of
FFTs. The “Implicit / Explicit” means whether the inverse matrix
can be computed explicitly or not. The method (i) is the typical so-
lution for optimization based methods by using linear algebra and
sparse matrix expression. Then (ii) is the result of the conjugate gra-
dient (CG) method [12], and the number of its inner iterations is set
so as to give a similar PSNR with (i). On the other hand, (iii)-(vii)
are the proposed solution using FFT form. Clearly the complexities
of the FFT form are less than that of the matrix form. Although the
propagation based method (vi) is slower than the adjugate method
(iv), it will reverse when 4 ≤ M because of their complexities:
O(iv)(M

3M !)>O(vi)(M
3).

Fig. 2 shows subjective and numerical evaluations of the ma-
trix and FFT forms. The results were obtained after 20 iterations

4The experiments run on a PC with Intel Core i7 2.7GHz and are imple-
mented using mex (MSVC11 C++ without parallel computation) on MAT-
LAB. We directly call the appropriate LAPACK functions of MATLAB to
reduce the costs of function callbacks and checks for matrix information.

Fig. 1. Spectrums of FFTed BCCB filter blocks of TGV smoothing.
(left) is blocks of P in (29) and (right) is their inverse.

(a) Original (b) Noisy (c) Matrix form (d) FFT form
PSNR (dB) 20.22 28.67 28.66

Fig. 2. Subjective and numerical evaluations of matrix and FFT
forms. (i) and (vii) are corresponding to methods shown in Table 1.
The dB values denote PSNR between the original image (a). After
YCoCg color conversion [18], each color layer is smoothed by TGV
using the same parameters α1=0.06 and α2=0.05.

of ADMM. One can see the differences are vanishingly low since
the difference of PSNR is only 0.01dB. Note that this difference of
PSNR is independent of images since the difference mainly comes
from the accuracy of the propagation based inverse calculation in
(16) for the set of kernels but for the images in Fig. 1.

6. CONCLUSION

In this paper, we described an efficient computation method for mul-
tivariable l2 equations. It utilizes the BCCB structure in the matrix
blocks of the KKT system, and performs their calculation in the fre-
quency domain using efficient pixel-wise inverse calculation. We
also described the TGV smoothing method as an application, and
improve the bottleneck of its l2 part. We hope our method will help
other applications.

7. ACKNOWLEDGEMENTS
The authors are grateful to S. Ono, the author of [17], for fruitful
discussions about the TGV in Sec. 4.

2651

8. REFERENCES

[1] N. Wiener, Extrapolation, interpolation, and smoothing of sta-
tionary time series, Wiley / MIT Press, 1942.

[2] S. Boyd and L. Vandenberghe, Convex optimization, Cam-
bridge Univ. Press, 2004.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[4] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion de-
blurring from a single image,” ACM Trans. Graphics (SIG-
GRAPH), vol. 27, no. 3, pp. 73:1–73:10, 2008.

[5] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via l0 gradi-
ent minimization,” ACM Trans. Graphics (SIGGRAPH Asia),
vol. 30, no. 5, pp. 174:1–174:11, 2011.

[6] W. Karush, “Minima of functions of several variables with in-
equalities as side constraints,” M.S. thesis, Dept. Math., Univ.
Cicago, 1939.

[7] H.W. Kuhn and A.W. Tucker, “Nonlinear programming,”
in Proc. Berkeley Symp. Math. Statist. and Prob., 1951, pp.
481–492.

[8] P. Smaragdis, “Blind separation of convolved mixtures in the
frequency domain,” Elsevier J. Neurocomputing, vol. 22, pp.
21–34, 1998.

[9] F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki,
“Combined approach of array processing and independent
component analysis for blind separation of acoustic signals,”
IEEE Trans. Speech and Audio Process., vol. 11, no. 3, pp.
204–215, 2003.

[10] A.N. Tikhonov, A.S. Leonov, and A.G. Yagola, Nonlinear ill-
posed problems, vol. 1, Chapman and Hall, 1998.

[11] K. Shirai, M. Okuda, T. Jinno, M. Okamoto, and M. Ikehara,
“Local covariance filtering for color images,” in Springer
LNCS (ACCV 2012), 2013, pp. 1–12.

[12] R. M. Hestenes and E. Stiefel, “Methods of conjugate gradients
for solving linear systems,” J. Research of the National Bureau
of Standards, vol. 49, no. 6, pp. 409–436, 1952.

[13] J. Rajagopalan, “An iterative algorithm for inversion of matri-
ces,” M.S. thesis, Dept. ECE, Concordia Univ., 1996.

[14] V. Pan and J. Reif, “Efficient parallel solution of linear sys-
tems,” in Proc. ACM Symp. Theory of Computing, 1985, pp.
143–152.

[15] K. Bredies, K. Kunisch, and T. Pock, “Total generalized varia-
tion,” SIAM J. Imaging Sci., vol. 3, no. 3, pp. 92–526, 2010.

[16] S. Setzer, G. Steidl, and T. Teuber, “Infimal convolution reg-
ularizations with discrete l1-type functionals,” Commun. in
Math. Sci., vol. 9, no. 3, pp. 797–827, 2011.

[17] S. Ono and I. Yamada, “Optimized JPEG image decompres-
sion with super-resolution interpolation using multi-order total
variation,” in Proc. IEEE ICIP, 2013, pp. 474–478.

[18] H.S. Malvar, G.J. Sullivan, and S. Srinivasan, “Lifting-based
reversible color transformations for image compression,” in
SPIE Apps. Digital Image Process., 2008.

[19] Netlib Repository, “Linear algebra package (LAPACK),”
www.netlib.org.

2652

