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Abstract—Due to its intuitive structure and efficient imple-
mentation, such as integer wavelets, lifting style wavelets gained
high popularity. Following the natural correspondence between
subband and lifting filters, this paper proposes a new approach
to the design of wavelets indirectly through the optimisation
of its corresponding block wavelet transform (BWT). BWT is
a matrix transform which is generated from subbands, and it
describes the relation between these two transform approaches.
The BWT optimisation is achieved by making the matrix close
to a particular Karhunen-Loeve transform (KLT) of interest. It
has been observed that lifting-style wavelets have their constrains
in the BWT matrix structure, therefore the minimisation of the
difference between a KLT and a BWT derived from a lifting
style wavelet becomes a non-trivial task. This paper briefly
describes the vanishing moment and orthogonality constraints of
the BWT, and introduces the first attempts to obtain single stage
lifting wavelet filters that satisfies the constrained minimisation.
Experimental results are provided.

I. INTRODUCTION

Lifting scheme was envisaged by Sweldens as a popular,
successful, and flexible wavelet analysis method for the im-
plementation of biorthogonal wavelets [1], [2]. Similar to sub-
band filterbanks, design of lifting wavelet filters immediately
became a mature field. However, the design motive was mostly
the concept of compact support with maximum number of
vanishing moments, as proposed by Daubechies [3].

On another track, an interesting work by Cetin and Gerek
links the gap between subband decomposition structures and
block matrix transforms by devising a method to generate
a transform matrix (namely, the Block Wavelet Transform,
BWT) from a given subband decomposition filter bank [4].
The success of the corresponding BWT matrices were tested
in a typical transform coding standard, JPEG, by substituting
the DCT. The direct correspondence between subbands and
transform matrices inspires the idea that, if the transform
matrix has an optimality in some sense, then, by inverting the
BWT generation process from the subband decomposition, the
corresponding wavelet filters could also be optimised, hence
designed.

On the way to achieve the above mentioned BWT in-
version, many intrinsic properties of the lifting-style imple-
mentation should be carefully investigated. For this purpose,
these properties were researched by closely examining the in
vivo research literature. For example, using lifting scheme,

Calderbank et al developed an integer to integer wavelet
transform [5]. Li et al developed a novel algorithm that is
used to lift the vanishing moments of wavelet from the general
wavelet [6]. Meng et al used lifting decomposition for a
different approach, namely the stationary wavelet transform
[7]. Zhang et al showed a way to implement a class of infinite-
impulse-response(IIR) orthogonal wavelet filter banks by using
the lifting scheme with two lifting steps [8]. Srinivasarao
et al used the adaptive lifting scheme in the design of IIR
orthogonal wavelets [9]. For content-based image retrieval,
Quellec et al used adaptive nonseparable wavelet transform
with lifting scheme [10]. Yang et al presented the lifting
scheme of wavelet bi-frames along with theoretical analysis,
structure, and the corresponding algorithm [11]. Fujinoki et
al developed triangular biorthogonal wavelets by extending
two-dimensional lifting [12]. For lossy-to-lossless image cod-
ing, Suzuki et al generalized block-lifting factorization of
M-channel biorthogonal filter banks [13]. All such research
outcomes provide an optimisation constraint over the lifting
wavelet filters.

Our research focuses on the parametric ”BWT” matrix
generating properties of a flexible lifting structure, excluding
the cases with cascaded prediction (P) and update (U) stages.
The paper starts by re-introducing the generation of BWT
from balanced subband trees. We briefly show the pattern
dependence between a lower size (2k × 2k) BWT and the
immediate larger BWT matrix of size 2k+1 × 2k+1 in terms
of parametric coefficients of P and U matrices.

II. BLOCK WAVELET TRANSFORM

A block wavelet transform (BWT) is a square matrix, whose
coefficients are generated by feeding periodic impulse trains
to tree structured subband filters [4]. By deliberately selecting
the period of the input impulse train as 2l, where l corresponds
to the depth of the subband tree, every wavelet packet branch
is set to produce a constant value, making a column vector
for the whole tree leaves. By varying the phase of the input
periodic signal, different output vectors are obtained. Finally,
the 2l different vectors render the columns of the desired
BWT matrix. In this work, the BWT matrices are obtained
by making use of lifting-style decompositions, starting from
the l = 1 case in the following subsection.
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A. Block Wavelet Transforms of Lifting Stages

Fig. 1. 1-level lifting structure.

Figure 1 depicts the single level lifting decomposition. For
a 2 × 2 BWT parametrization, the degree of freedom for the
prediction and update filters may not exceed 2, so a 2-tap
prediction filter, i.e., P (z) = a0 + a−1z, and a 2-tap update
filter, U(z) = b0 + b1z

−1 is assumed. With the 2-periodic
input:

x[n] =

{
ρ0, n even
ρ1, n odd

the output signals from the upper (yu[m]) and lower (yd[m])
branches become

yu[m] = ρ0 + (b0 + b1)[ρ1 − ρ0(a0 + a−1)]

yd[m] = ρ1 − ρ0(a0 + a−1)
(1)

respectively. By assigning ρ0 = 0 and ρ1 = 1, the first output
column, then by assigning ρ0 = 1 and ρ1 = 0, the second
column is obtained for the output BWT matrix, A2×2 as

A2×2 =
[
f2×2
i,j

]
i,j=1,2

where
f2×2
1,1 = 1− (a0 + a−1)(b0 + b1)

f2×2
2,1 = −(a0 + a−1)

f2×2
1,2 = b0 + b1

f2×2
2,2 = 1,

(2)

meaning that the BWT may not be varied separately by the
2-tap filters, but rather their coefficient sums determine the
matrix. This low degree of freedom expands by extending the
BWT matrix size, with which, the P and U filters become
reasonably long.

The recursion step to obtain 2k+1 × 2k+1 BWT from a
2k × 2k version shows us that the parametric freedom of P
and U filter length is limited to 2k for a BWT matrix of size
2k+1 × 2k+1. Let’s notate length-2l filters as:

P (z) =

2l−1∑
i=−(2l−1−1)

a−(i)
2l
zi

U(z) =

2l−1∑
i=−(2l−1−1)

b(i)
2l
z−i,

where (·)n corresponds to a modulo-n. The iteration process
starts from the 2× 2 case, and, while constructing the 2k+1×
2k+1 BWT matrix from the 2k × 2k BWT, the coefficients
a−(i)

2k
overlaps with a−i and the coefficients b(i)

2k
overlaps

with bi for i = 0, . . . , 2l − 1. Thus in this iteration process,
the P and U filter coefficients are updated according to the
following assignments:

a−i ← a−i + a−i+2k + a−i+2k+1 + . . .+ a−i+2l

bi ← bi + bi+2k + bi+2k+1 + . . .+ bi+2l

We can generalize obtaining 2k+1×2k+1 BWT matrix from
2k × 2k BWT matrix as:

A2k+1×2k+1

=
[
f2k+1×2k+1

i,j

]
i,j=1,...,2k+1

, (3)

where each fi,j is algorithmically constructed from samples
of circularly symmetric matrices that are composed of the
smaller corresponding BWT matrix, A2k×2k . The derivations
are omitted due to page limitations.

B. BWT case study: Daubechies 5/3

The celebrated Daubechies 5/3 lifting wavelet [3] uses the
prediction and update filters of P (z) = 0.5·(1+z) and U(z) =
0.25 · (1 + z−1), so that

A4×4
db5/3 =


1
4

1
4

1
4

1
4

−1 0 1 0

0 −1 0 1

−1
2

1
2 −1

2
1
2


Note that all rows of A4×4

db5/3 are orthogonal to each other
despite Daubechies 5/3 wavelet being biorthogonal. The cor-
responding 8× 8 BWT matrix can be easily expanded to

A8×8
db5/3 =
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

,

which immediately shows non-orthogonal (yet invertible) row
pairs. In fact, it is concluded that, in order to impose orthogo-
nality for the 8× 8 matrix, 4-tap prediction and update filters
should be necessary (in case of non-cascaded lifting prediction
and updates). This observation also shows that, for the shortest
2-tap prediction and update case (meaning a 4× 4 transform
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matrix), the only useful lifting wavelet that can mimic an
orthonormal KLT transform is the Daubechies 5/3. For longer
lifting cases, the design flexibility exists. The imposition of
the orthogonality is briefly described in the next section.

C. Orthogonality constraints on the BWTs

The orthogonality of 2 × 2 BWT matrix A2×2 is achieved
through a quadratic root formula relating sums of P and U
filter coefficients:

α =
1∓

√
1− 4β2

2β

where

α = a0 + a−1 + . . .

β = b0 + b1 + . . .

(4)

Note that the famous wavelets db5/3, crf13/7, and swe13/7
automatically satisfy this orthogonality condition, where, for
all wavelets listed, α = 1 and β = 0.5 [14].

In our formulation, the matrix A2×2 is used as a ker-
nel matrix. The above mentioned iterative BWT generating
algorithm may be used to develop the next BWT matrix
with one degree higher. The key idea is to incorporate the
below orthogonality constraints of the BWT matrix samples
in the ”size incrementing” process. Therefore, if the kernel
matrix is orthogonal and the iterative restrictions for the
orthogonality are complied with, then the BWT matrices with
higher dimensions will also be orthogonal.

The orthogonality of the 2k × 2k BWT matrix A2k×2k

imposes that its coefficients satisfies 0 =
∑2k

i=1 fl,ifm,i for
l ̸= m. The expansion to stage k+1 immediately adds 3 more
cross-terms to the summation, each of which must all be set to
zero. These conditions are imposed on the four permutation
matrices that generate the BWT matrix, and the numerical
results for the case of 8 × 8 and 16 × 16 BWTs (inherited
from the 4× 4 case) is exemplified in the following section.

III. ORTHOGONAL BWT GENERATING LIFTING EXAMPLES

The prediction and update filters of a particular biorthogonal
wavelet example, where the corresponding BWT matrices
become orthogonal, is given below:

P13/7(z) =
1

2
(z−1 − 1 + z + z2)

U13/7(z) =
1

4
(z − 1 + z−1 + z−2)

(5)

The corresponding orthogonal 4× 4 BWT matrix is

A4×4
13/7 =


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The achieved 8×8 BWT matrix using the 4×4 BWT matrix
is

A8×8
13/7

=
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The frequency ordering of the rows (as well as the energies)

require further processing of simple row permutations and
normalisation, however the orthogonality property of this con-
struction is distinct, and could not be achieved with celebrated
lifting wavelets such as db5/3, crf13/7, or swe13/7. It is now
the time for the issue of back conversion of the matrix to
find-back the lifting prediction and update filters. From the
polyphase analysis:

Hp(z) =

[
H0,ev(z) H0,od(z)
H1,ev(z) H1,od(z)

]
=

[
1− P13/7(z)U13/7(z) U13/7(z)

−P13/7(z) 1

]
so

H13/7,0(z) =H0,ev(z
2) + zH0,od(z

2)

=− 1

8
z−6 +

1

4
z−3 +

1

8
z−2 +

1

4
z−1

+
1

2
− 1

4
z +

1

8
z2 +

1

4
z3 − 1

8
z6

H13/7,1(z) =H1,ev(z
2) + zH1,od(z

2)

=− 1

2
z−2 +

1

2
+ z − 1

2
z2 − 1

2
z4

(6)

Here, H13/7,0(z = 1) = 1, H13/7,0(z = −1) = 0 and
H13/7,1(z = 1) = 0, H13/7,1(z = −1) = −2 assuring iterated
convergence by having at least one vanishing moment. The
aliasing component matrix H(z) is defined as [15]:

H(z) =

[
H0(z) H1(z)

H0(−z) H1(−z)

]
Using the prediction and update filters used in this case,

the perfect reconstruction condition is the determinant of the
aliasing component matrix and

∣∣det(H(ejω))
∣∣ = 2 where

∣∣det(H(ejω))
∣∣ =∣∣H13/7,0(e

jω)H13/7,1(−ejω) +H13/7,0(−ejω)H13/7,1(e
jω)

∣∣
(7)

When A16×16 is desired to be orthogonal, utilisation of the
prediction and update filters that are described in Equation 8
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will produce the P and U filters as

P25/13(z) =
1

2
(z−2 − 1 + z2 + z4)

U25/13(z) =
1

4
(z2 − 1 + z−2 + z−4)

(8)

and the corresponding subband filters turn out to be

H25/13,0(z) = −
1

8
z−12 +

1

4
z−7 +

1

8
z−4 +

1

4
z−3

+
1

2
− 1

4
z +

1

8
z4 +

1

4
z5 − 1

8
z12

H25/13,1(z) = −
1

2
z−4 +

1

2
+ z − 1

2
z4 − 1

2
z8

(9)

with
∣∣det(H(ejω))

∣∣ = 2 and satisfaction of necessary vanish-
ing moments.

As a general formula, it was observed that, to achieve a
2k+2 × 2k+2 BWT matrix for k = 1, 2, . . ., we need to use
the filters defined in Equation 10:

P12k+1/6k+1(z) =
1

2

(
(z−2)k − 1 + (z2)k + (z4)k

)
U12k+1/6k+1(z) =

1

4

(
(z2)k − 1 + (z−2)k + (z−4)k

)
k = 1, 2, . . .

(10)

and the corresponding subband filters are

H12k+1/6k+1,0(z)

= −1

8
z−6k +

1

4
z−4k+1 +

1

8
z−2k +

1

4
z−2k+1 +

1

2
− 1

4
z

+
1

8
z2k +

1

4
z2k+1 − 1

8
z6k

H12k+1/6k+1,1(z) = −
1

2
z−2k +

1

2
+ z − 1

2
z2k − 1

2
z4k

(11)
for integer k. Consequently, the class of lifting filters with
orthogonal BWT properties is achieved. Since KLT matrices
are orthogonal by definition, the proposed BWT inversion is
limited to a search within the provided set of lifting prediction
and update filters. Performance examples are provided in the
next section.

IV. NUMERICAL EXPERIMENT

Numerical results will be demonstrated with two 512×512
test images, namely ”Lena” and ”Mandrill”, due to page
limitations. The 4 × 4 KLT matrices (generated by row-wise
correlations) are obtained with two degrees of freedom for the
P and U filters as:
PLena(z) = 0.7077 + 0.2923z, ULena(z) = 0.4271 +
0.0729z−1, and PMand(z) = 0.7838 + 0.2162z, UMand(z) =
0.4647 + 0.0353z−1. It is noticeable that the P and U
coefficients are rather different than the db5/3 filter for the
same size, whilst the coefficient sums remain to be 1 and 0.5,
as expected.

The new filters are applied to the Lena test image to form 1,
2 and 3-level wavelet trees. The wavelet-space variances are
evaluated as the performance, where smaller variances indicate
better coding gain with better energy unbalance.

Component Daubechies 5/3 Our 5/3 Wavelet
LH 37.1815 33.6394
HL 66.3877 65.5296
HH 21.1877 26.7628
LLH 126.7025 100.7754
LHL 235.5276 193.2309
LHH 139.2559 126.7523
LLLH 282.1463 201.6424
LLHL 561.4503 446.0214
LLHH 511.1497 340.9113

TABLE I
VARIANCES OF THE WAVELET TREE IMAGES FOR DAUBECHIES 5/3 AND

OUR WAVELET

V. CONCLUSION

In this research we have discovered several properties of
the single stage lifting scheme in terms of its BWT generation
abilities. The aim of the research was to find a methodology
to design P and U filters which eventually produce BWT
matrices that may become as close to a particular KLT matrix,
as possible. Since KLT matrix is statistically optimal in terms
of coding gain, the mentioned design method is expected to
provide good filter outcomes. During constructing the BWT
matrix corresponding to a lifting stage, it was first observed
that the size of the matrix limits the degree of freedom for the
size of the P and U filters with a 2k+1 × 2k+1 BWT matrix
leading to length -*2k filters.

The second observation was the systematic extension of the
BWT matrix size by increasing the tree depth. The observed
system enabled us to extend and inherit several nice properties
of the smaller-sized BWT matrix, such as orthogonality or
attainment of required vanishing moments. Eventually, an
algorithm and a general rule was achieved to achieve lifting
filters which can generate orthogonal BWT matrices at rather
large sizes. As expected, the degree of freedom for the KLT-
approximation is rather limited, once such orthogonality and
vanishing moment constraints are imposed - usually in the
sense of carefully distributing a total coefficient sum of 1 or
0.5 amongst filter coefficients.

An initial test with the famous Lena test image yields that
the optimal length-2 P and U filters with a 4×4 BWT matrix
which comes closest to the corresponding KLT matrix is quite
different than the famous db5/3 wavelet. It is worthwhile to
mention that both the generated and the db5/3 wavelet have
one vanishing moment. Besides, the variances of wavelet-
space images provide smaller values for the produced wavelet,
giving a hint of fine coding gain performance. Our research
aims to provide detailed derivations of the above algorithm,
together with more number of experimental examples in the
future.
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