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ABSTRACT

This paper proposes M -channel oversampled filter banks for graph
signals. The filter set satisfies the perfect reconstruction condition.
A method of designing oversampled graph filter banks is presented
which allows us to design filters with arbitrary parameters, unlike
the conventional critically-sampled graph filter banks. The practical
performance of the proposed filter banks is validated through graph
signal denoising experiments.

Index Terms— Graph signal processing, graph filter banks,
graph wavelets, oversampled filter banks, graph signal denoising

1. INTRODUCTION

Signal processing on graphs is one of the emerging topics in signal
processing [1–11]. Unlike regular signal processing1, graph signal
processing must explicitly consider the structure of the signal. In
this context, well-studied signals, e.g., acoustic, image, and video
signals, can be considered to be graph signals with very simple struc-
tures, and for this reason, tools for graph signal processing have re-
ceived much attention.

Graph wavelet transforms have been developed for signals with
structures. Some transforms require simplifications to be made to
the graph, such as decomposition into even and odd nodes [5,6]. Re-
cently, wavelet transforms without graph simplifications have been
proposed [2–4]. A key technique of (digital) signal processing is
down and upsampling, and it has been also studied for graph signals
in the context of the spectral folding phenomenon [2, 3], which is
analogous to the aliasing effect of regular signal processing. Since
the spectral folding phenomenon affects bipartite graphs, the filter
banks are designed to be two-channel critically-sampled ones. Un-
fortunately, these designs have strong limitations imposed on them
if they are to be used to obtain critically-sampled perfect reconstruc-
tion filter banks. In contrast,M -channel (M > 2) filter banks would
be useful for graph signals, since oversampled filter banks for regu-
lar signals have more freedom in their design and it has been shown
that they outperform critically-sampled systems in several applica-
tions [12–17].

In this paper, M -channel oversampled graph filter banks are
studied. For instance, perfect reconstruction is possible even if we
use an arbitrary lowpass filter, and the filters we design have good
stopband attenuation. As a possible application, we show how our
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(B) 24760288 and MEXT Tenure-Track Promotion Program.

1In this paper, we often use the word regular signals/transforms to dis-
tinguish discrete signals on uniform points without explicit structures from
graph signals discussed in this paper.

oversampled graph filter bank can be used to denoise graph signals.
A comparison of implementations of a simple hard-thresholding
technique shows that the proposed filter bank outperforms the
critically-sampled graph filter bank and the wavelet transform for
regular signals.

The remaining of this paper is organized as follows. Preliminar-
ies and notations are summarized in the rest of this section. Section
2 gives reviews of the existing works. Section 3 gives the perfect
reconstruction condition of oversampled graph filter banks and their
detailed design method is presented in Section 4. The design ex-
amples and experimental results for graph signal decomposition are
shown in Section 5. Finally, Section 6 concludes the paper.

Preliminaries and Notations: In this paper, we consider a finite
undirected graphG = {V, E}where V and E represent sets of nodes
and edges in the graph, respectively. Similar to [2, 3], we assume a
graph without self-loops and multiple connections. The number of
nodes is N = |V| unless specified. The (m,n)-th element in the
N×N adjacency matrix A is wmn if nodesm and n are connected,
and 0 otherwise. The diagonal degree matrix D contains dmm =∑
n amn. With A and D, the unnormalized graph Laplacian matrix

(GLM) is defined as L := D − A. In this paper, we consider the
symmetric normalized GLM (SNGLM) L = D−1/2LD−1/2. As
mentioned in [3], our filter bank is also applicable to the random-
walk GLM Lr = D−1L, without any changes.

The important symbols for the paper are listed below:

1. f : Graph signal (f ∈ RN )

2. uλi : i-th eigenvector of L
3. λi: i-th eigenvalue of L (Luλi = λiuλi ), where 0 = λ0 ≤
λ1 ≤ . . . ≤ λN−1 = 2 for bipartite graphs.

4. σ(G): Spectrum of the graph, i.e., σ(G) := {λ0, . . . , λN−1}.

2. REVIEW

In this section, we briefly review the existing approaches of graph
wavelets and filter banks.

2.1. Filter in Graph Spectral Domain

The eigenspace projection matrix of a graph is defined as follows:

Pλi =
∑
λ=λi

uλu
T
λ (1)

where ·T is the transpose of the matrix. Note that uλi is orthogonal
to each other. That is,

PλiPλj = δ(λi − λj)Pλi , (2)
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Fig. 1. Two-channel critically-sampled graph filter bank.

where δ(·) is the Kronecker delta function. By using Pλi , a spectral
domain filter for graph signals can be defined as follows:

H =
∑

λi∈σ(G)

h(λi)Pλi (3)

where h(λ) is the kernel of H.

2.2. Critically-Sampled Graph Filter Banks

The downsampling and upsampling effects for the SNGLM of a bi-
partite graph have been studied in [2]. Note that an arbitrary graph
can be decomposed into KG disjoint bipartite graphs. Let us define
a bipartite graph G = {L,H, E} where nodes in G are divided into
two disjoint sets L andH. We call the nodes in L the lowpass chan-
nel and those inH the highpass channel, for the sake of convenience.

Similar to the regular signals, the downsampling-then-upsampling
operation can be defined as follows:

Ddu,L =
1

2
(IN − J), Ddu,H =

1

2
(IN + J) (4)

where J is a diagonal matrix with antipodal coefficients, i.e., +1 or
−1, with the following form:

Jmm =

{
+1 if f(m) belongs toH,
−1 if f(m) belongs to L.

(5)

Fig. 1 illustrates the entire transformation for one bipartite
graph. It is similar to the regular filter banks [18–20], but the num-
ber of signals in the lowpass and highpass channels are no longer
N/2 (or, more formally, bN/2c or dN/2e): the lowpass channel
contains |L| signals whereas the highpass channel retains |H| sig-
nals, where |L|+ |H| = N . The number of signals in each channel
is determined on the basis of the graph-coloring result.

The critically-sampled wavelet filter banks [2,3] are designed to
satisfy the following perfect reconstruction property:

T =
1

2
G0(I− J)H0 +

1

2
G1(I+ J)H1

=
1

2
(G0H0 +G1H1) +

1

2
(G1JH1 −G0JH0) = IN .

(6)

where Hk =
∑
λi∈σ(G) hk(λi)Pλi is a filter in the analysis bank

and Gk =
∑
λi∈σ(G) gk(λi)Pλi is one in the synthesis bank. In

(6), the second term is called the spectral folding term, and it corre-
sponds to aliasing in regular signals. Therefore, this spectral folding
term must be zero. As a result, the critically-sampled perfect recon-
struction graph filter bank must satisfy the following conditions:

g0(λ)h0(λ) + g1(λ)h1(λ) = 2

g0(λ)h0(2− λ) + g1(λ)h1(2− λ) = 0.
(7)

For the orthogonal solution [2], one prototype lowpass filter h0(λ)
is used to yield the remaining h1(λ), g0(λ), and g1(λ). Moreover,

Fig. 2. Oversampled graph filter bank.
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Fig. 3. Four-channel product filter example.

h0(λ) has to satisfy h2
0(λ) + h2

0(2 − λ) = c2, where c is some
constant. However, such an h0(λ) cannot be an exact polynomial,
hence, exact perfect reconstruction and orthogonality are not pos-
sible [2, 3]. Instead, the biorthogonal solution [3] (hereafter, it is
referred to as graphBior) is based on the spectral factorizations of
the maximally-flat filter pair, which is the similar approach to that
of the Cohen-Daubechies-Fauveau wavelet transform [21], and the
designed filter bank strictly satisfies (6).

3. PERFECT RECONSTRUCTION CONDITION OF
OVERSAMPLED GRAPH FILTER BANKS

The details of the perfect reconstruction condition is discussed in
this section. For clearer understanding, first we present the case of
M = 4, and it is extended to the M -channel case.

3.1. Four-Channel Case

Consider a four-channel graph filter bank shown in Fig. 2. After fil-
tering by Hk, the zeroth and first channels pass |L| signals, whereas
the second and third ones keep |H| signals. f̂k is represented as

f̂k =

{
1
2
Gk(I− J)Hkf k = 0, 1

1
2
Gk(I+ J)Hkf k = 2, 3.

(8)

Therefore, the overall transfer function T is

T =
1

2

∑
λi

3∑
k=0

gk(λi)hk(λi)Pλi

+
1

2

∑
λi

{g2(λi)h2(2− λi) + g3(λi)h3(2− λi)

− g0(λi)h0(2− λi)− g1(λi)h1(2− λi)}PλiJ (9)
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which is similar to [2, 3]. As a result, the perfect reconstruction
condition becomes

3∑
k=0

gk(λ)hk(λ) = 2 (10)

and

g2(λ)h2(2− λ) + g3(λ)h3(2− λ)
− g0(λ)h0(2− λ)− g1(λ)h1(2− λ) = 0

(11)

for any λ. (11) is satisfied if we use the constraints g0(λ) = h2(2−
λ), g1(λ) = h3(2−λ), g2(λ) = h0(2−λ), and g3(λ) = h1(2−λ)
(similar to what is done in [3]). Let us define a product filter as
pk(λ) = gk(λ)hk(λ). Finally, (10) can be rewritten as

p0(λ) + p0(2− λ) + p1(λ) + p1(2− λ) = 2. (12)

By this perfect reconstruction condition, we can select four-channel
product filters instead of two-channel systems of the critically-
sampled graph filter bank. It is shown in Fig. 3.

3.2. General M -Channel Case

Let us assume that an oversampled graph filter bank hasM channels
where M is even. Additionally, M/2 filters keeps |L| signals and
the other ones keep |H| signals. With the similar derivations of the
previous subsection, the perfect reconstruction condition is

M−1∑
k=0

gk(λ)hk(λ) = 2 (13)

M/2−1∑
k=0

gk+M/2(λ)hk+M/2(2− λ)− gk(λ)hk(2− λ) = 0 (14)

for any λ. The latter equation is satisfied when we choose gk(λ) =
hk+M/2(2− λ) and gk+M/2(λ) = hk(2− λ). Then (13) becomes

M/2−1∑
k=0

gk(λ)hk(λ) + gk(2− λ)hk(2− λ) = 2. (15)

As a result, the product filter pk(λ) must satisfy the following con-
dition:

M/2−1∑
k=0

pk(λ) + pk(2− λ) = 2. (16)

4. DESIGN METHOD OF M -CHANNEL OVERSAMPLED
GRAPH FILTER BANKS

First we consider the case of M = 4. Let us define q(λ) = p0(λ) +
p1(λ). (12) can be rewritten as

q(λ) + q(2− λ) = 2, (17)

This equation is the same as that of a two-channel biorthogonal graph
filter bank [3]. Therefore, the design problem boils down to separat-
ing the critically-sampled product filter q(λ) into lowpass and band-
pass (Fig. 3) filters p0(λ) and p1(λ) such that the sum of filters is
q(λ).

Let us assume that a lowpass product filter p0(λ) is arbitrarily
chosen so that h0(λ) and g0(λ) are “good” lowpass filters with the
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Fig. 4. Four-channel oversampled graph filter banks with (k0, k1) =
(4, 4). (a) analysis filter bank. Black lines indicate graphBior(6,6)
[3]. (b): halfband filters.

Table 1. Denoised Results of Minnesota Traffic Graph: SNR (dB)
σ 1/2 1/4 1/8 1/16 1/32

noisy 6.01 12.08 17.99 24.04 30.04
sym8 (1 level) 6.17 11.92 18.58 24.28 30.01
sym8 (5 levels) 5.71 10.97 17.98 24.06 30.09
graphBior(6, 6) 8.42 14.25 20.00 25.57 31.25

OSGFB 10.15 15.36 21.73 28.77 34.55

cutoff frequency λ = 0.5. By changing the variable of λ = 1+ l [3],
p0(1 + l) can be expressed as

p0(1 + l) = (1 + l)K
(
1

2
+

K−1∑
m=1

αml
m

)
, (18)

where αm is an arbitrary parameter. From the halfband condition
[3], the even degree of q(λ) = p0(λ) + p1(λ) must be zero.2 To
compensate the even powers in p0(1 + l), p1(1 + l) is defined as
follows:

p1(1 + l) = (1 + l)K
(
1

2
+

K−1∑
m=1

βml
m

)
, (19)

where βm is determined in such a way as to cancel the even powers
in p0(1 + l). Clearly q(1 + l) becomes

q(1 + l) = (1 + l)K
(
1 +

K−1∑
m=1

(αm + βm)lm
)

(20)

and its degree is 2K − 1, thus q(λ) is a maximally-flat filter.

A similar derivation is possible for the generalM -channel graph
filter banks. In that case, parameters for (M − 2)/2 product filters
can be freely chosen, and the last product filter can be designed so
that the entire product filter q(λ) is a maximally-flat halfband filter.

5. DESIGN EXAMPLES AND EXPERIMENTAL RESULTS

In this section, we show the design methodology ofM -channel over-
sampled graph filter banks and a few design examples.

2Although Proposition 1 in [3] has a restriction that q(λ) is a product of
two kernels, it is also applicable for a sum of two kernels assumed in this
paper.
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5.1. Design Methodology

As mentioned above, we can use arbitrary parameters to design fil-
ters. In what follows, we will use a sequential design method to
obtain good filter banks:

1. Design hk(1− l) and gk(1− l) (k = 0, . . . ,M/2− 2) with
k0 and k1 zeros at l = 1 (λ = 2). They are represented as
follows:

hk(1− l) = (1− l)k0
Jh−1∑
j=0

sh,k,j l
j (21)

gk(1− l) = (1− l)k1
Jg−1∑
j=0

sg,k,j l
j (22)

where sh,k,j and sg,k,j are filter coefficients. The numbers of
arbitrary parameters in hk(1 − l) and gk(1 − l) are Jh and
Jg , respectively. The filters are optimized by using the cost
function of the stopband attenuation shown below:

C(hk) =w0

∫
l∈ωp

(
√
2− hk(1− l))2dl

+ w1

∫
l∈ωs

h2
k(1− l)dl,

(23)

where w0 and w1 are weights and ωp and ωs are defined as
the passband and stopband (−1 ≤ ωp, ωs ≤ 1), respectively.

2. Calculate two-channel halfband filter pair q(1 − l) = q(λ)
and q(1 + l) = q(2 − λ) with K = k0 + k1 zeros at l = 1
so that the pair satisfies (17).

3. Calculate the bandpass product filter

pM
2
−1(1− l) = q(1− l)−

M/2−2∑
k=0

pk(1− l)

= (1− l)K p̃M
2
−1(1− l),

(24)

where pk(1− l) = gk(1− l)hk(1− l).
4. Factorize pM

2
−1(1−l) into two bandpass filters hM

2
−1(1−l)

and gM
2
−1(1 − l). Test all combinations of roots as long as

both bandpass filters have real-valued coefficients, and then
the best combination, i.e., the filters minimizingC(hM

2
−1)+

C(gM
2
−1), are selected.

Fig. 4 shows an example of oversampled graph filter banks. The
arbitrary lowpass filters h0(λ) and g0(λ) are designed to have the
degree 10 and 11, respectively. For comparison, the frequency re-
sponses of the critically-sampled graphBior(6, 6) [3] are also plot-
ted. They have 13-taps for the lowpass filter and 12-taps for the
highpass filter. It is clear that our oversampled lowpass filter has a
shaper transition band and a more uniform response in the passband
than the critically-sampled graph filter banks.

5.2. Denoising of Graph Signal

Here we show the potential ability of using oversampled graph fil-
ter banks to remove additive white Gaussian noise from graph sig-
nals. The oversampled graph filter bank is compared with graph-
Bior(6, 6) [3] and regular one-dimensional wavelet sym8, which
can be found in the Wavelet Toolbox in MATLAB. For the regu-
lar wavelet transform, the input signal f is treated as a vector, and
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Fig. 5. Denoising results. From left to right, top to bottom: Original
signal, noisy signal (σ = 1/2), denoised signal by graphBior(6,6)
[3], denoised signal by sym8 (1 level), denoised signal by sym8 (5
levels), and denoised signal by oversampled graph filter bank.

one-level and five-level dyadic decompositions are performed. Only
one level transform is used for the graph filter banks. All methods re-
tain the lowest-frequency subband and the remaining high-frequency
subbands are hard-thresholded with T = 3σ, where σ is the standard
deviation of noise.

Fig. 5(a) shows the original signal of the Minnesota Traffic
Graph, where the signal value is {−1, 1}, and Table 1 summarizes
the denoising performances. As expected, graph filter banks per-
form much better than the regular wavelet transform. Furthermore,
our proposed oversampled graph filter bank outperforms graphBior
by 1–3 dB in SNR.

The denoised signals for σ = 1/2 are shown in Fig. 5. Since the
regular wavelet transform does not consider the structure of signals,
the signals are over-smoothened across the boundary of the center
and surrounding areas; many blue points appear in the surrounding
area. In contrast, graph filter banks preserve the solid boundary. It is
clear that the proposed filter bank performs better than the critically-
sampled one.

6. CONCLUSIONS

We presented the design method of M -channel oversampled filter
banks for graph signals. It satisfies the perfect reconstruction con-
dition, and allows us to use arbitrary parameters, unlike critically-
sampled graph filter banks. it was shown to outperform other trans-
forms, including regular wavelet transforms, in a graph signal de-
noising experiment.
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