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ABSTRACT

The use of shared projection neural nets of the sort used in
language modelling is proposed as a way of sharing param-
eters between multiple text-to-speech system components.
We experiment with pretraining the weights of such a shared
projection on an auxiliary language modelling task and then
apply the resulting word representations to the task of phrase-
break prediction. Doing so allows us to build phrase-break
predictors that rival conventional systems without any re-
liance on conventional knowledge-based resources such as
part of speech taggers.

Index Terms— Speech synthesis, TTS, unsupervised
learning, neural net language modelling, multitask learning.

1. INTRODUCTION
Neural networks (NNs) have re-emerged as a popular paradigm
for the construction of text-to-speech (TTS) systems in recent
years [1, 2, 3], much of their popularity being due to their
successful use in learning ‘deep’ representations of data.
In TTS (as in related work in speech recognition [4]) the
emphasis has been on learning representations of acoustic
data. For example, [3] uses Restricted Boltzmann Machines
to operate directly on spectral envelopes, in effect replacing
conventional representations of speech derived with expert
knowledge (mel cepstral coefficients, line spectral pairs, etc.)
with ones learned by the deep model. In this paper we focus
instead on the text part of TTS, which has so far received less
attention, and treat NNs as a way of obtaining representa-
tions of text which are optimised directly for the prediction
of speech features.

Our previous work [5, 6] on obtaining features in an unsu-
pervised way for use in TTS systems adopted a vector space
model (VSM) approach, using a two-stage approach to semi-
supervised learning. In the first – unsupervised – stage, we ex-
tract high-dimensional continuous-valued features to charac-
terise textual or linguistic units of interest (letters, phonemes,
words, utterances, etc.). This is done by compiling matri-
ces of cooccurrence counts and then applying low rank ma-
trix factorisation to obtain lower-dimensional distributional
representations of the items in question. Then in a second

supervised step, these features are used in place of conven-
tional features (part of speech (POS) tags, phonetic categories
etc.) as predictors for various supervised tasks such as phrase-
break prediction and acoustic state clustering. The advantage
of this approach is that the first stage allows the system to take
advantage of large quantities of unannotated text. However,
although we have shown empirically that the representations
obtained in the first step in many cases improve the predictors
trained in the second, the weakness of this approach is that the
two steps are nonetheless unlinked, and there is no guarantee
that the features from the unsupervised phase will be useful
in the supervised one.

In the current work, we investigate the use of shared pro-
jection feed-forward NNs of the sort that have become popu-
lar for language modelling [7] to learn word representations.
This architecture has the potential to overcome the problems
of our VSM approach as it allows word representations to be
learned jointly with a classifier on some supervised task of in-
terest. However, we want to retain the benefit of being able
to exploit large text resources which has been a key feature
of our previous work, and so consider an approach similar to
that of [8, 9]. There, word representations obtained within
a neural network language model are subsequently used for
a variety of natural language processing tasks in a multitask
learning (MTL) framework. The idea of MTL [10] is to train
predictors for several related tasks in such a way that some pa-
rameters of the various task-specific models are shared, and
can therefore be estimated on more data. Classically, some
classifiers are devoted to auxiliary tasks: the predictions of
these classifiers are of no direct interest, and they are learned
purely to improve the estimation of the shared parameters. In
[8, 9] the shared parameters are word representations from a
NN language model (NNLM): the language modelling task is
an auxiliary task whose only role is to initialise word repre-
sentations which are subsequently refined on the other tasks.
This is an attractive paradigm for TTS where multiple sys-
tem components are trained on small amounts of expensive
manually-labelled (usually disjoint) data and optimised in iso-
lation. One goal of our on-going work is to develop a TTS
system with shared representations for all units of interest
(letters, phonemes, words, phrases, etc.) which are trained
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Fig. 1. Topology of neural net language model used.

jointly with all system components (relating both to text pro-
cessing and acoustic modelling) in the manner of [11].

The scope of the current work is limited in comparison
to the longer-term plans outlined in the previous paragraph,
but is a first step in that direction. In [5] we took the task of
phrase-break (PB) prediction for rapid testing of VSM fea-
tures before applying them to other tasks in later work. Here
we take the same task: its credible objective measure and the
small size of its training data enable a faster turnaround of ex-
periments than would be allowed, for example, by the training
and subjective evaluation of acoustic models. We take ad-
vantage of the relatively small scale of the PB task to pose
some questions which it seems desirable to answer before
progressing to more complex systems. Firstly, are features
taken from a standard feed-forward NNLM equally as useful
for our task as VSM features were previously shown to be?
Secondly, how big an increase in performance is afforded by
updating word representations on the supervised task? Con-
versely, what happens if we learn representations from scratch
on the supervised task?

2. SHARED PROJECTION FEED-FORWARD NNS
What we term a shared projection feed-forward NN was used
for letter-to-sound conversion in [12], and has become pop-
ular for language modelling [7, 13, 14]. In all cases, shared
weights in an initial hidden projection layer (in [12] termed
a self-organising code layer) map from orthogonal inputs en-
coding the identities of textual units (letters, words) in some
history or context to continuous representations of them. The
fact that weights are shared between all units in the context
or history means that the representations of those units are in-
variant to their positions in the context or history. Further-
more, the representations are learned along with the other
parameters of the network so that the letter/word represen-
tations which are obtained are optimised on the task of in-
terest (predicting the correct phoneme in [12], predicting the
following word in [7]). In [12] a direct comparison is made
with the knowledge-based coding of letters used in the NET-
Speak system: the learned representations outperformed the
knowledge-based coding.

Figure 1 shows the topology of a feed-forward trigram
NNLM. N denotes the size of the vocabulary: input consists
of a 2N sparse vector encoding the 2 word trigram history.
Shared weights W1 transform the inputs for individual to-
kens into their P -dimensional representations: the concatena-
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Fig. 2. Topology of phrase-break predictor used.

tion of the representations of the words in the n-gram history
constitutes the output of the projection layer. A hidden layer
with H units and a non-linear activation function transforms
the outputs of the projection layer. Finally, an N -dimensional
output layer produces n-gram probabilities for each word in
the vocabulary given the input history. Use of the softmax
normalisation function to constrain the network’s outputs to
be in the range [0, 1] and to sum to 1 ensures a valid proba-
bility distribution.

There is nothing about this model topology which restricts
it to language modelling: as already mentioned, in [12] it is
used for LTS conversion. We here use the slightly modified
version of it shown in Figure 2 for phrase-break prediction.
Here, two words of context are also used, although in the cur-
rent experiments these are the words preceding and following
a possible break, in contrast to the language model history.
Indeed, the use of the shared projection means that words’
representations are invariant to position in context, so that
arbitrarily different contexts (in terms of the words’ relative
position to the target and their number) can be used for differ-
ent tasks within the same experiment. The reason we restrict
the context to preceding and following words is to ensure re-
sults which are comparable to those of previous work, where
the same context was used. Another difference between the
language model and PB predictor is that the size L of the out-
put layer is not the size of the vocabulary, and is determined
by the number of possible values of the variable to be pre-
dicted. In the experiments presented here, L is 2 to encode
break and no break (which we note is equivalent to using a
single sigmoidal unit). A final difference is that an extra E
inputs are fed directly into the second hidden layer: these ex-
tra inputs encode additional contextual information beyond
the 2 words’ context such as distance to punctuation (see the
following section for details).

3. EXPERIMENTS
3.1. Data
The data used for the supervised part (PB prediction) of
present experiments is identical to that described in [5]: a sub-
set of 39 stories from the SEC/MARSEC corpus [15, 16, 17]
which consists of annotated radio broadcast transcriptions.
Punctuation marks and two levels of PB (break/no break)
were associated with the token that precedes them as a feature
of that token. The data consist of c.35,000 non-punctuation
tokens; 11% are from the ‘overlap’ section (annotated prosod-
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Table 1. Summary of benchmark systems built
Neural net Decision tree Feature
systems systems description
B B′ Basic
G G′ Guessed POS
T T′ Topline POS

ically by both the corpus’s transcribers) which we use as in
[5] as a test set. No single fixed development set was used in
the current work as in [5]; instead, partition into training and
validation sets was carried out randomly per model built, as
explained in Section 3.2.

For the unsupervised pretraining part of the present exper-
iments (NNLM training) we used the same 1.2 million tokens
of Wall Street Journal text from which VSM features were
obtained in [5]. The tokenised text was lowercased, but no
sophisticated text normalisation was applied. A small set of
tokens was found using the procedure described in [5] and
rewritten with the <unk> token used to handle unseen words
at validation and run time.
3.2. Systems built
Benchmark systems Table 1 summarises the benchmark
systems used in this work. Systems B, G and T are NN
benchmark systems which in terms of the features they use
are directly comparable with decision tree-based systems of
the same names from previous work [6], which are here de-
noted B′, G′ and T′ to disambiguate.1 None of systems B, G
or T in effect makes use of the network’s projection layer – for
those systems, an input identical for each example is fed into
the two words’ context input of the NN, in effect resulting in
a standard feed-forward NN with a single hidden layer.

All systems make use of the following basic punctuation
and positional features:
• The identity of the word’s punctuation symbol;
• The number of words {since, until} a word with a

strong punctuation mark (i.e. excluding quotes);
• The number of words {since, until} the beginning/end

of the utterance;
For training NNs, the punctuation feature was represented
using 1-of-k coding, and the positional features were nor-
malised to have zero mean and unit variance.

System B makes use of these features only. All other sys-
tems additionally make use of some representation of the cho-
sen context words: this was limited to the words preceding
and following a possible phrase-break for consistency with
our previous work.

Despite the great variety of machine learning methods that
have been used for PB prediction in the past, all of them have
used POS tags as independent variables. A system using POS
tag representations of the context words is therefore an ap-
propriate topline system, and system T supplements the basic

1Results for the slightly refined systems presented in [6] are used, rather
from the nearly identical systems presented in [5]; note that the system here
called T′ corresponds to system Tt (using the TnT tagger) in [6].

Table 2. Summary of systems built with induced word rep-
resentations;  and #indicate true and false respectively.
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features with the output of a high-quality POS tagger (TnT:
[18]). The tagger’s output for the context words was collapsed
to the 23-tag set used in [19, 20, 5] and was presented (coded
as two 1-of-k vectors) to the network along with the basic
features of system B as the E extra inputs shown in Figure 2.

A full POS tagger can be approximated with a few simple
rules; system G makes use of such rules, consulting 9 lists
of different types of function words at run time. Words not
found in any of the lists are tagged as content words; others
are replaced with the tag associated with the list in which they
appear (e.g. pronoun, modal verb, etc.). This is a suitable
benchmark against which to compare unsupervised methods
as it is a system built with only minimal expert knowledge. 2

Experimental systems Experimental systems U, R, F and
S are summarised in Table 2. They all make use of the projec-
tion layer as well the E extra inputs shown in Figure 2, which
are used to input the basic positional and punctuation features
already described.

Several different configurations using induced word rep-
resentations were explored. Most of them used the training of
a trigram NNLM as an auxiliary task: for this the 1.2M tokens
of text described in Section 3.1 were used. System U made
use of weights W1 which were pretrained on the full vocab-
ulary of the unsupervised (language modelling) task, but kept
them frozen during training on the PB task. Unseen words
are handled with the <unk> token of the NNLM’s vocabu-
lary. This system is the nearest equivalent to the decision tree
system (here called U′) from [6] using a VSM (learned on the
same 1.2 million tokens of text) and where the classifier was
not able to transform individual words’ representations on the
PB task.

The full vocabulary and projection weights W1 were sim-
ilarly taken from the trained NNLM and used to initialise the
projection layer weights W1 of system F. Instead of then
being kept frozen, however, these weights were then updated
with backpropagation along with the NN’s other weights
when the NN is trained on the PB data. Comparison of the

2External benchmarks: [21, 19, 20] report F scores of 74.4%, 78.3%, and
81.6% on MARSEC data, although possible differences of data preparation
mean this comparison needs to be made with caution.
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results of systems U and F therefore will allow us to test the
usefulness of fine-tuning existing word representations on the
task of interest.

Systems R is designed to determine the usefulness of pre-
training weights W1 on the language modelling task. Its pro-
jection weights W1 were randomly initialised and then tuned
only on the PB task. The vocabulary is therefore limited to
that of the PB training set: to handle unseen words at testing
time, words with a single occurrence in the training data were
found, and n% of them were randomly selected and replaced
with the <unk> token. Three versions of this configuration
were tried, with the value of n set to 100, 50 and 10.

To investigate the impact of the mismatch caused by fine-
tuning only the representations of tokens seen in the PB train-
ing data (and not the tokens seen in the LM data but absent
in the PB training data), system S was built. This is identical
to F, except that it uses only a subset of the language model
vocabulary, limited to the words seen in the PB training data.
The representation of the <unk> token – initialised in the
NNLM and updated on the PB task – is therefore used to han-
dle all words absent from the PB training data at validation
and test time.
3.3. Network training
Weights and biases of all models were initialised uniformly at
random according to the normalised initialisation suggested
by [22] (except weights W1 of systems U, F and S where pre-
trained weights are used). 10% of the training examples were
chosen at random for each model trained for use as a vali-
dation set. The remaining 90% were resampled to balance
class probabilities – resampling was done with a new random
seed for each model trained. Stochastic gradient descent with
minibatches was used to train NNs using negative log likeli-
hood of the training examples as the cost function. A learning
rate was used which decayed exponentially when improve-
ment in validation set negative log likelihood between suc-
cessive epochs fell beneath a prespecified threshold. Training
finished when the negative log likelihood of this validation
set stopped decreasing, or when 15 epochs had been com-
pleted. A small L2 regularisation term was used for training
the NNLM, but no explicit regularisation was used in training
the PB predictors. In all NNs built, projection dimension P
was fixed at 50 (consistent with the dimension of the VSM
features used in previous work). For NNLM training, hidden
layer size H was set to 100. For PB predictors, 5 different
values of H (10, 50, 100, 150, 200) were tried. Five PB pre-
dictors were trained with different weight initialisations for
each combination of configuration and H value.
3.4. Results
Results are reported as F scores on phrase-breaks. Mean F
scores on validation sets were used to determine 50 as the op-
timal setting of parameter n in system R. The optimal setting
for H for all configurations was also found in this way. A sin-
gle set of 5 systems in each of these 7 configurations was then
evaluated on the test set; means and standard deviations of F
scores are plotted in Figure 3 alongside corresponding results
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Fig. 3. Mean and st. deviation of F scores (test set) of final
systems (left) & decision tree systems for reference (right).
from earlier work (where the statistics summarise the scores
of 10 systems per configuration).

4. DISCUSSION
The overall trend among baseline systems B, G and T is the
same as that of decision tree benchmarks (B′, G′, T′), ex-
cept that T makes less good use of the POS features than
the corresponding decision tree system T′. Adding the word
representations pretrained on the LM task and keeping them
fixed (U) gives the best performance, outperforming T and
equalling that of T′. Thus using NNLM features allows us
to close the gap in performance between topline and unsuper-
vised word feature systems while using only 1.2M tokens of
unannotated text data. This is a pleasing outcome: in previ-
ous work [6] 20M tokens of text were needed to close this gap
when using VSMs. Pretraining representations in the NNLM
is clearly beneficial to training them from scratch on the PB
task, although doing only that allows system R to rival the
minimally supervised system G. The slightly inferior perfor-
mance of system F is surprising, as a major motivation for this
work was the expectation that updating the word representa-
tions on the PB task directly would yield an improvement.
We hypothesise that this is due to the mismatch between the
fine-tuned vocabulary and the items whose NNLM represen-
tations were ‘left behind’ during fine-tuning. Using these ‘left
behind’ representations gives similar results to the case where
they are simply replaced with the <unk> token (system S).
If true, this has important implications for MTL as it sug-
gests that a large and consistent inventory of representations
is better than one which has been partially tuned on a task
of interest. Several ways to enforce representations’ consis-
tency during fine-tuning could be proposed, such as tuning a
shared-weight adaptation layer instead of the word represen-
tations themselves [14, 23], or by using a different training
curriculum, such as interleaving batches of PB examples and
LM examples.
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