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ABSTRACT
Speech synthesis systems are typically built with speech data
and transcriptions. In this paper, we try to build synthesis
systems when no transcriptions or knowledge about the lan-
guage are available. It is usually necessary to at least possess
phonetic knowledge about the language. In this paper, we
propose an automated way of obtaining phones and phonetic
knowledge about the corpus at hand by making use of Artic-
ulatory Features (AFs). An Articulatory Feature predictor is
trained on a bootstrap corpus in an arbitrary other language
using a three-hidden layer neural network. This neural net-
work is run on the speech corpus to extract AFs. Hierarchi-
cal clustering is used to cluster the AFs into categories i.e.
phones. Phonetic information about each of these inferred
phones is obtained by computing the mean of the AFs in each
cluster. Results of systems built with this framework in mul-
tiple languages are reported.

Index Terms— Speech synthesis, TTS without text, un-
labeled speech corpora, articulatory features, neural networks

1. INTRODUCTION

For speech technology to be practical for the majority of lan-
guages in the world, we must deal with languages where there
is no clear standard orthography. This work concerns build-
ing speech synthesis systems for languages where only audio
is available and there is no readily available writing system.
Such languages include those for which there is no writing
systems at all, but also those for which only an ill-defined ver-
sion exists (such as spoken dialects of Arabic and Chinese).
This paper continues our existing work of discovering a con-
sistent symbolic representation of speech suitable for synthe-
sis. Of course this work will require further integration into
other systems. For example, in one possible direction, we can
envisage a cross lingual synthesis system that takes as input
a standard written form in a source language and combines
both translation and speech synthesis technologies to produce
speech synthesis in the target unwritten language. Thus our
discovered written form for the unwritten language must not
only produce a symbolic phonetic form suitable to encode
speech, but also be appropriately abstract enough that we can
identify word-like forms that will allow translation from the
typically better resourced written language. Thus we can cre-
ate a synthesizer that takes Hindi text as input and produces
Konkani speech, or a system that takes High German text as
input but produces Bavarian Speech.

2. RELATED WORK

We have already utilized cross lingual phonetic recognition
technology in finding an initial phonetically influenced sym-
bolic representation of audio in our target unwritten language.
This cross-lingual phonetic segmentation is adapted by re-
training to allow those segmentations to better present the
phonetic distinctions in the target language [1]. But the sym-
bols assigned to these segmentations remain the same, and
any phonetic distinctions in the target language that do not ex-
ist in the source language must be encoded in the contextual
tree prediction within the statistical parametric synthesizer.

This work tries to address this limitation by providing a
mechanism, that is phonetically inspired that will allow us
to better rename these segments given by Automatic Speech
Recognition.

To do this we appeal to the notion of articulatory pho-
netic features as defined in IPA [2], and work that has created
multi-stream classifiers for these features in arbitrary speech
[3]. Thus, going in the direction of a wider inventory of cross-
lingual phonetic forms (e.g. as has been successful Global-
phone type systems [4]) we make use of a lower level com-
ponent of phonetic variation. Cross lingual articulatory fea-
tures (AFs), have been used successfully in other work [5].
The second, and we believe novel, use of AFs is to use their
predictive relationship with Mel Cepstral features to discover
new clustering of the segmental units found by the first cross-
lingual phonetic recognizer. Thus we treat the initial labelling
as a broad phonetic class recognizer, but use the AF/MCEP
relationship to find an appropriate number of new phoneti-
cally inspired labels for the initial segments.

3. GETTING FEATURES INDEPENDENT OF
SPEAKER AND LANGUAGE

A typical speech synthesizer is built using a speech corpus
and transcripts that correspond to the recorded speech where
the synthesizer is made to learn the mappings between the text
and the sounds of the speech signal. In our task, the absence
of text information is a somewhat bewildering issue, because
this is equivalent to a machine learning problem with only
output labels and no input data. We attempt to solve this by
inverting it so that we have input data but no output labels so
that this becomes an unsupervised learning problem.

At the very least, training a synthesizer would require a
phonetic transcription of the corpus. For this task, we assume
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that we know nothing about the language of the speech cor-
pus. So, not only do we lack a phonetic transcription, but we
also know nothing about what the phones of the language are.
Our first task is therefore to try to automatically discover the
phonetic set of our speech corpus. It is extremely difficult to
discover the true phones of a language without careful lin-
guistic analysis. So, for this paper, we will focus on getting a
“phone-like” unit of speech that is consistent throughout the
corpus.

The most obvious way to discover phones would be to try
some sort of unsupervised clustering; but what are the fea-
tures that should be clustered? The usual speech features
used for most tasks are signal processing features such as
Linear Prediction Coefficients[6] or Mel Frequency Cepstral
Coefficients[7]. These features do an excellent job of repre-
senting the speech signal. However, none of these let us sepa-
rate speaker specific characteristics, emotion specific charac-
teristics, and language specific characteristics. So, doing an
unsupervised clustering on one of these features might not
give us clusters that are phonetically relevant. Ideally, we
would want to apply our clustering process on features that
contain little speaker or language specific information.

There has been work in the speech recognition community
on trying to find such features. One such set of features which
are particular useful for our task are called Articulatory Fea-
tures (AFs). Vowels in human speech can be viewed in a chart
indexed by the frequency of the first two formants. We can
identify vowels as being in two dimensions, high to low(F1),
and front to back(F2). Other ways of describing vowels in-
clude nasality, length, stress, and tone. Consonants too can
be broken down into a set of features that distinguish stops,
fricatives, affricates etc... Articulatory Features describe the
phones in terms of parameters like these. These are described
in detail in [8], [9], [10], [11], and [3]. These should not be
confused with the features described in [12] which describe
how the articulators of speech actually move.

Various combinations of these articulatory features define
phones in a language. While different languages and dialects
differ in which combinations form phones, the articulatory
features themselves are independent of language. This is be-
cause the articulatory features are based on the phonetics of
human speech production, not on the phonology of specific
languages. Articulatory features are also, for the most part,
independent of speaker. For this paper, we use the 26 binary
articulatory features described in [9].

4. TRAINING AN ARTICULATORY FEATURE
DETECTOR

Articulatory feature extraction is done by bootstrapping from
a speech corpus for which we do have transcriptions at the text
or the phonetic levels. This bootstrap corpus can be in any
arbitrary language, or even a mixture of several languages.
It is desirable though to have a corpus with several hours of
speech from multiple speakers. For our task we used the Wall
Street Journal corpus[13], which has multiple speakers, but is
all standard US English.

A simple table lookup is used to obtain articulatory fea-
ture information corresponding to each phone in our bootstrap
corpus. While extracting features from data with phone labels
is trivial, extracting these directly from the speech signal re-
quires a more sophisticated approach.

Mel Cepstral Coefficients[14] are used as input features
from which Articulatory Features are predicted. The map-
ping from one to the other is learned using a three hidden
layer feedforward network with sigmoid activations using the
QuickNet toolkit[15]. 26 neural networks were trained in this
manner (one for each AF).

4.1. Testing articulatory features

Each of the neural networks we trained has an accuracy be-
tween 85-99% on cross-validation sets. However, we wanted
to do some experiments on real data to verify that our pre-
dicted AFs were reasonable. To do this, we used the EHMM
labeling tool as described in [16] to do a forced alignment
between phone labels and articulatory features in the RMS
voice of the CMU Arctic database[17]. EHMM gives us an
alignment that maximizes the likelihood of the phone labels
having generated the articulatory feature data. A synthesizer
built using this alignment would only give us sensible results
if the articulatory feature extraction works reasonably well.
So, this is an independent way of evaluating the quality of our
articulatory feature extraction. The synthesizer is compared
to one built with alignments obtained using Mel Cepstral fea-
tures. The ClusterGen speech synthesizer is used in all our
experiments[18]. Mel Cepstral Distortion (MCD) on a sepa-
rate test set is used as an objective metric for evaluating the
quality of speech synthesis. This experiment was also repli-
cated on a Hindi speech corpus[19]. The results obtained are
shown in table 1

Table 1. MCD Scores
MCD Scores English Hindi

EHMM on MCEPs 5.1610 5.255
EHMM on AFs 5.4752 5.665

The synthesizer built with alignments using AFs does not
perform as well as the one that used MCEPs. However, the
difference in MCD between the two is small enough that it
indicates that the articulatory features obtained through the
methods described above are reasonable.

5. PHONE SEGMENTATION

Obtaining phonetic information about a speech corpus not
only requires a consistent phone representation but also in-
volves segmenting the speech corpus at the phone level. The
task of doing phone segmentation would be greatly simplified
if we had an approximate estimate of the number of phones
for each utterance in our corpus. We obtain a first approxi-
mation of this number by running a Automatic Speech Rec-
ognizer in phone recognition mode. For our task, we used
the CMU Sphinx speech recognition system[20] in all phone
mode and the iterative procedure developed in [21] to get ini-
tial phone transcripts. We must remember that an English
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phone recognizer gives us English phones and so is unlikely
to produce a good phonetic transcription of our foreign lan-
guage corpus. For example, if we were to run this recognizer
on a Hindi corpus, the recognizer would not distinguish be-
tween the aspirated and unaspirated stops in Hindi. Or if it
were run on a Japanese corpus, the recognizer would try to
make distinctions between the liquids ’L’ and ’R’ while the
language itself does not.

While the recognizer will make errors in assigning labels
to the phones in an utterance, we are at this stage caring more
about the segmentation rather than the labels of those seg-
ments. Doing a forced alignment using the EHMM tool be-
tween the phone labels and the file containing the audio of the
utterance will give us a fairly good estimate of the segment
boundaries. In our earlier work, [1], we took the provided
phone names as is, here we are discovering a better set.

6. CLUSTERING AND LABELING PHONES
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Fig. 1. Clustering and Labeling Framework

Once phone segmentation is done, we have to face the
difficult problem of assigning labels to these phones. The
MCEP parameters that we extract from the speech represent

the speech signal in 25ms frames at 5ms shifts. The AFs
which are extracted from the MCEPs also are of the same
time intervals. However, the phone segments themselves are
much longer than the length of a frame. For each phone seg-
ment, we average the MCEPs and the AFs in that segment
so that we have an average MCEP vector, and an average AF
vector for that phone segment. Our task is now to find a set
of phone labels which gives a consistent description of these
average vectors in our hypothetical database. Before we con-
sider possible schemes of label assignment, we have to tackle
the issue of evaluating how good our labeling schemes are.
It is reasonable to assume that the more consistent and accu-
rate the phone labels are, the easier it is for the synthesizer to
model a voice based on that data. A good set of phone labels
will therefore result in a good MCD score.

The most straightforward way to automatically assign a
consistent set of phone labels is to use some sort of clustering
method. As mentioned earlier, it is advantageous to cluster
the Articulatory Features, rather than the MCEPs themselves,
because of their speaker and language independent charac-
teristics. We build a Classification And Regression Tree
(CART)[22] that forms a hierarchical clustering of the AF
vectors, where the leaf nodes contain Gaussians modeling the
MCEP vectors that correspond to the AF questions that are
asked at higher levels of the tree. The clustering algorithm
works by minimizing the variance of the MCEP coefficients
at the leaf nodes by asking questions about the AF vectors.
Overfitting is prevented by specifying a minimum number of
MCEP vectors from the training data that must correspond to
each leaf of the tree (also called the stop size).

Once we have built a tree with AF questions and MCEP
leaves using our entire corpus, each leaf will now be a fairly
reliable cluster that corresponds to an acoustically derived
phone. This tree is then used to assign labels to the phone
segments in our corpus. We call these labels Inferred Phones
or IPs because they are inferred from purely acoustic infor-
mation with no human involvement. One important issue in
doing this is deciding the stop size of the tree i.e. deciding
how many leaves and therefore how many phones we should
infer from the corpus. There is no clear answer to this prob-
lem because it is difficult even for linguists to give a definitive
number for phones of a language. We will instead report re-
sults that we obtained with a range of phoneset sizes. In our
experience, nearly all languages in the world have between
20-200 phones. So, we use that as bounding range within
which we will do our experiments.

6.1. Experiments and results

We ran experiments on four languages, Hindi, Dari, Iraqi, and
English. The results obtained for Hindi, Dari, and Iraqi are
shown in Figure 2. Comparisons are made between Cluster-
Gen synthesis systems built with various numbers of Inferred
Phones and the baseline system which was built with phones
from ASR. To make a fair comparison of the inferred phones
to the ASR phones, we assumed that we did not possess any
phonetic feature information about the ASR phones either.
Empirically we observed that this assumption increased the

2615



baseline MCD by about 0.07. As can be seen, the IP systems
in Hindi and Iraqi perform better than the baseline system.
In Dari, the IP systems come close to the baseline but do not
perform better. However, the trend of the Dari IP systems is
similar to that of the other languages. As a comparison with
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Fig. 2. MCD Scores for Inferred Phones

a language that we have much more experience with, we also
tested an English system using the true phonetic transcrip-
tion as the baseline to look at the difference in performance
between using knowledge-based phonetic transcriptions com-
pared with inferred phones. The phonetic transcription was
obtained using the CMUDICT phonetic lexicon[23] on the
original text. The baseline MCD was 5.702. The best IP sys-
tem, with 190 inferred phones, had an MCD of 5.904. This
result is quite promising considering that a completely data-
driven phoneset only has a 0.2 MCD difference from the base-
line system which had the best possible phonetic transcrip-
tion.

7. GETTING PHONETIC FEATURES FOR
INFERRED PHONES

One potential problem that usually occurs with a completely
data driven phoneset, as opposed to using phone recognition,
is that it is usually impossible to get any phonetic information
about inferred phones.

Our technique has a big advantage here since articulatory
features are fundamental to our clustering process. By look-
ing at the articulatory features that correspond to our inferred
phones, it is straightforward to derive phonetic information
for these.

Each of the leaves of our CART that we had used for
clustering is a cluster that corresponds to a particular Inferred
Phone. The mean AF of all the AF vectors in that cluster gives
us a good estimate of the phonetic information about that In-
ferred Phone. This information can be used by the synthesizer
in prediction.

7.1. Experiments and Results

We repeated our experiments on Hindi, Dari, and English with
the inferred phonetic information. For our baseline, we take
the best performing system from the previous set of exper-
iments. For Hindi, this would be the IP system with 165
phones. For Dari, the baseline would be the same as the pre-
vious one. For English, it would again be the system with
perfect phonetic transcriptions. Figure 3 shows the results in
Hindi and Dari. In both languages, the IP system is able to
perform better than the baseline systems.
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Fig. 3. IPs with phonetic information added

In the English system, the baseline MCD was 5.702. After
adding inferred phonetic information, the best IP system, with
190 phones, had an MCD of 5.812. This brings our system
even closer to the best possible phonetic transcriptions.

8. DISCUSSION

In this paper we have provided a technique that can be used
to automatically derive phones and phonetic features for those
phones. One thing that needs consideration is that the phones
were derived purely from acoustics. The improvements that
we get in synthesis may be attributed to the transition to a rep-
resentation that is closer to language as it is spoken as opposed
to the way it is written. While the advantages of this direction
are obvious, it is important to note that the gains will come
at a cost. A Text-To-Speech synthesis system or synthesis in
a Speech to Speech translation system must work from text
rather than raw phones. At this point, the ease with which the
inferred phones can be predicted from text is unknown. This
is an issue that we plan to investigate in future work.
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