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ABSTRACT

As the speech recognition field proceeds to open domain
and multilingual tasks, the need for robust g2p conversion
has been increasing. Towards this objective, we propose
a new g2p conversion training method based on the Nar-
row Adaptive Regularization of Weights (NAROW) online
learning algorithm. NAROW improves over its predecessor
AROW by automatically adjusting hyperparameters to re-
duce mistake bounds, and ensuring that the learning rate is
not updated when features for the input data have already
been updated enough. The contribution of this paper is first to
extend NAROW to structured learning, and show the inequal-
ity to bound the maximum number of errors in structured
NAROW. In experiments, our proposed approach signifi-
cantly improved over MIRA with consistent phoneme error
rate reductions of 1.3-3.8% on a variety of dictionaries.

Index Terms— g2p conversion, out-of-vocabulary word,
online discriminative training, structured learning, NAROW

1. INTRODUCTION

Out-of-vocabulary (OOV) words are the bottleneck in large-
vocabulary open-domain speech recognition systems [1] and
text-to-speech systems [2]. In order to solve the problem of
OOV words, Grapheme-to-phoneme (g2p) conversion, which
is structured learning problems for which there are an ex-
tremely large number of candidate answers, has been used
for a long time. As the speech recognition field proceeds to
the open-domain and the multilingual [3] the need for robust
g2p conversion has been increasing.

Rule-based approaches [4] and statistical approaches
based on methods such as neural networks [5], decision trees
[6], maximum entropy [7], joint sequence model [8, 9] have
all been proposed for the g2p task. Most recent attempts
have applied online discriminative training employing rich
features [10, 11, 12]. One of the representative methods is the
Margin Infused Relaxed Algorithm (MIRA) [13], an online
structured learning method extended to g2p conversion by
Jiampojamarn et al. [10, 11]. We have also recently proposed
a method for g2p conversion based on structured Adaptive
Regularization of Weight Vectors (AROW) [12], an online
learning method designed to resolve MIRA’s overfitting prob-
lems by estimating the confidence of each weight represented

by a second order information matrix. However, structured
AROW is still not a complete solution. The inverse of the
second order information matrix representing the confidence
of the weights serves as a learning rate for each weight, and
these values are reduced with each update. This can cause
cases where a particular weight converges to an inappropri-
ate value, and cannot be updated further because its learning
rate approaches zero. Also, it is difficult to choose AROW’s
hyperparameter to adjust the generalization of learning [14].

In order to solve the above problems, an expansion of
AROW called Narrow Adaptive Regularization of Weights
(NAROW) [15] has been proposed. Specifically, NAROW
chooses a better value of the hyperparameter on each update
to minimize the mistake bound. In addition, the second mo-
ment is not updated when features for input data have high
confidence, preventing early convergence to bad weights. In
order to incorporate these advantages into g2p conversion,
we propose an online structured learning algorithm based on
NAROW, which we call structured NAROW.

The first contribution in this paper is to extend NAROW
to structured learning problems, and show the inequality to
bound the maximum number of errors in this context. The
inequality is derived based on the online convex optimization
framework [15]. We also evaluate structured NAROW on a
g2p task comparing with the joint sequence model, structured
learning based on MIRA, and structured AROW.

2. G2P CONVERSION

2.1. Formalization
We define g2p conversion as a process of converting a
grapheme sequence x into a phoneme sequence y. Given
a correct phoneme sequence y for a grapheme sequence x,
we formalize g2p conversion as

ŷ = arg max
y

wTΦ(x,y), (1)

where w indicates the classifier’s weight vector and Φ(x,y)
indicates a feature vector which consists of arbitrary values
such as frequencies of joint n-gram features [11] on x and
y. In Eq.(1), ŷ can be efficiently obtained using dynamic
programming. Structured learning can be employed to obtain
a w that allows for accurate prediction of the correct phoneme
sequence in this framework.
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2.2. Existing G2P online structured learnings
The most widely used method for online structured learn-
ing in g2p is based on MIRA [13]. Given the i-th example
(xi,yi) and the N -best hypotheses ŷ1, . . . , ŷN , MIRA up-
dates wt by solving

arg min
wt

1

2
∥wt −wt−1∥2; s.t. ℓ(xi,yi, ŷn,wt) = 0; ∀n, (2)

where ℓ is a loss function that outputs zero when the correct
yt scores higher than the hypothesis ŷt with sufficient margin,
and a positive value otherwise. MIRA moves weights aggres-
sively to correctly classify the N -best according to Eq.(2),
and thus is prone to overfitting outliers or noisy data.

To resolve the overfitting, we have proposed structured
AROW, the binary classifier AROW [14] to online structured
learning. It updates wt by minimizing the following function
over ŷ1, . . . , ŷN sequentially.

L(wt,Σt) = DKL(N (wt,Σt)||N (wt−1,Σt−1))

+ 1
2r ℓ(xi,yi, ŷn,wt) +

1
2ro

T
t Σtot (3)

DKL(N (wt,Σt)||N (wt−1,Σt−1)) is the Kullback-Leibler
divergence between the Gaussian distributions for wt and
wt−1, r > 0 is a hyperparameter to adjust the generalization
of learning and ot is Φ(xi,yi) − Φ(xi, ŷn). The covariance
matrix Σ, roughly speaking, is a learning rate for w. Its in-
verse Σ−1 is a second order information matrix representing
the confidence of each feature. Σ is also updated so that
learning rates for observed features decrease, namely, con-
fidences for observed features increase. The minimization
of Eq.(3) updates the weights so that the correct hypothesis
scores higher than other hypotheses with minimal change
to the distribution, considering the variance of each weight.
By introducing the Σ, AROW avoids excessively moving the
weights of the important features that have frequently been
observed and updated. This property reduces the overfit-
ting problem. We showed that structured AROW improves
phoneme error rate and word error rate over MIRA in a g2p
task employing a dataset including artificial noisy data [12].

However, there are two main issues in structured AROW.
One is a problem where a some weights converge to inappro-
priate values for some orderings of the training data and can-
not be updated further because their learning rates approach
zero. Another is that it is difficult to choose a good r on each
round t.

3. STRUCTURED NAROW

In this section, we describe our proposed extension of NAROW
from binary classification to structured learning. We first
overview NAROW and note its differences from AROW.
The difference between AROW and NAROW is the setting
of the r. AROW sets a fixed value to r in every round t,
and the setting increases confidences linearly. On the other
hand, the setting in NAROW increases confidences logarith-
mically when features for input data have low confidence,

Algorithm 1 The proposed online structured learning algo-
rithm based on Follow the Regularized Leader

Input:Training dataset D = {(x̄1, ȳ1), ..., (x̄|D|, ȳ|D|)}
and a series of regularizers f0, . . . , fT−1

Output:weight vector wT

t = 1,θ0 = 0
repeat

for i = 1 to |D| do
wt = ∇f∗

t−1(θt−1) = Σt−1θt−1

Predict N -best hypotheses ỹ1, ..., ỹN by wT
t Φ(x̄i, ỹ)

for n = 1 to N do
Consider xt := x̄i, yt := ȳi, ŷt := ỹn and
ℓt(wt) := max(0, vtdt −wT

t ot)
if ℓt(wt) > 0 then

zt = −ot ∈ ∂ℓt(wt)
θt = θt−1 − zt
t = t+ 1
wt = ∇f∗

t−1(θt−1) = Σt−1θt−1

end if
end for

end for
until Stop condition is met

and does not increase confidences otherwise. This implies
that NAROW, unlike AROW, does not reduce learning rates
close to zero, preventing early convergence to bad weights.
The setting of the r in NAROW derives from minimizing the
mistake bound for NAROW, namely, the setting chooses a
good r on each round t, which we will describe in the struc-
tured learning context in Section 4. The rest of this section
describes a concrete algorithm for our structured NAROW.

The learning algorithm for structured NAROW builds on
the Follow the Regularized Leader (FTRL) defined in [15] for
binary classification. Our proposed method expands this to
structured prediction employing N -best candidates for learn-
ing, as shown in Algorithm 1. The FTRL updates the wt by
solving

wt = arg min
wt

t−1∑
i=1

ηiz
T
i wt + ft−1(wt), (4)

where ηi and zi denote a learning rate and a subgradient of
a loss function in ∂ℓi(wi) on round i respectively. ft−1(wt)
is a regularizer (also known as potential function) which con-
trols the amount of generalization of learning. In the proposed
structured NAROW, the ηt is 1 on every round t and the loss
function ℓ is defined as

ℓt(wt) = max(0, vtdt −wT
t ot), (5)

where vt = oT
t Σt−1ot > 0 adjusts differences in the num-

ber of features considering the variance Σt−1. Also dt =
d(yt, ŷt) indicates the loss incurred by incorrectly classifying
yt as ŷt. We define dt as the number of phoneme errors for
the g2p task. As a subgradient zt of the above loss, we choose
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−ot when ℓt(wt) > 0 and 0 otherwise. Next, we define a
regularizer ft(o) as 1

2o
TΣ−1

t o, where Σ−1
t = Σ−1

t−1 +
oto

T
t

rt
,

rt > 0 and Σ0 = I . The update form of Σ−1
t is the same as

that of AROW when rt is a fixed value in every t. The set-
ting of the rt in our structured NAROW is rt = vt

bvt−1 when
bvt > 1 and rt = +∞ otherwise, where b > 0 is a new
hyperparameter (for its derivation, see Section 4). Note that
in NAROW of binary classification, ft(o) is used instead of
ft−1(o) as a regularizer at wt like second order perceptron
[16]. However, we use ft−1(o) for it because ot required for
ft(o) is unknown before the classifying in structured prob-
lem. Finally the updated weight for Eq.(4) is obtained by

wt = ∇f−1
t−1(θt−1) = ∇f∗

t−1(θt−1) = Σt−1θt−1, (6)

where θt−1 = −
∑t−1

i=1 zi, θ0 = 0 and ∇f∗
t−1(θt−1) is

a gradient of the Fenchel conjugate f∗
t−1 for ft−1. f∗

t−1

is defined as f∗
t−1(θt−1) := supv

{
θT
t−1v − ft−1(v)

}
=

1
2θ

T
t−1Σt−1θt−1.

4. MISTAKE BOUND FOR STRUCTURED NAROW

In the previous section, The setting of the rt in structured
NAROW was rt = vt

bvt−1 when bvt > 1 and rt = +∞ other-
wise, For deriving the setting, we show the mistake bound of
structured NAROW based on online convex optimization.

4.1. Online convex optimization

Online convex optimization is a method for designing on-
line learning algorithms and analyzing them through a poten-
tial function (regularizer) [17], and plays an integral role in
deriving a mistake bound for NAROW. Online convex opti-
mization based on primal-dual progress has been proposed in
[18, 19, 20]. Orabona et al. [15] has generalized it to time-
varying potential functions. The generalized online convex
optimization framework based on FTRL is employed to de-
rive the mistake bound of NAROW.

We describe some definitions from convex analysis. A
β-strongly convex w.r.t a norm ∥ · ∥ is a function satisfying
f(v) ≥ f(u) + ∇f(u)T(v − u) + 1

2β∥v − u∥2, where
u,v ∈ ri(dom(f)). The functions ft(o) = 1

2o
TΣ−1

t o de-
fined in Section 3 are 1-strongly convex w.r.t. the norms
∥o∥2ft = oTΣ−1

t o. The dual norm ∥ · ∥∗ for a norm ∥ · ∥
is the norm defined as ∥u∥∗ := sup

{
uTv : ∥v∥ ≤ 1

}
. A β-

strongly smooth w.r.t ∥·∥∗ is a function satisfying f∗(u+v) ≤
f∗(u)+∇f∗(u)

Tv+ 1
2β∥v∥

2
∗. The f∗

t (o) =
1
2o

TΣto defined
in Section 3 are 1-strongly smooth w.r.t ∥o∥2f∗

t
= oTΣto. The

β-strongly convex/smooth are important properties in order to
derive a mistake bound.

4.2. Derivation of mistake bound

This section gives a brief sketch of the mistake bound deriva-
tion, and we refer readers to [15] for more detail although
there is a difference between binary classification and struc-

tured learning. We introduce the following condition

dt− ℓt(u) ≤ −uTzt; ∀u ∈ S, vt ≥ 1, (7)

where zt denotes any subgradient satisfying ℓt(wt) > 0. For
now, we assume vt ≥ 1 in Eq.(7) is satisfied, and discuss
exceptions in Section 4.3. From Lemma 1 in [15], the setting
in section 3, Eq.(7), and ft(λu) ≤ λ2ft(u), we have∑

t∈M∪U

(dt − ℓt(u)) = D +
∑
t∈U

dt −
∑

t∈M∪U

ℓt(u)

≤ λ∥u∥2

2
+

∑
t∈M∪U

(
λ(uTxt)

2

2rt

+
vtrt

2λ(rt + vt)
− m2

t

2λ(rt + vt)
+

mt

λ
), (8)

where mt = oT
t Σt−1θt−1, u is any weight vector, λ ≥ 0 is

any scale factor, D is the number of errors, M is the setting of
round t for prediction mistakes and U is the setting of round t
for correct prediction, with ℓt(wt) > 0.

4.3. Selection of hyperparameters rt

We would like to choose better hyperparameters rt minimiz-
ing the right side of the above mistake bound. Orabona et
al. [15] focus on minimizing the terms λ(uTxt)

2

2rt
+ vtrt

2λ(rt+vt)

in Eq.(8). The setting proposed by Orabona et al. was rt =
vt

bvt−1 when bvt > 1 and rt = +∞ otherwise. The setting
implies we should increase confidences logarithmically when
features for input data have low confidence, and not increase
confidences otherwise. Then, we have

D ≤
∑

t∈M∪U

ℓt(u) +
λ∥u∥2

2
+

∑
t:bvt>1

λbvt(u
Txt)

2

2(rt + vt)

+
1

2λ

∑
t∈M∪U

(min(
1

b
, vt)−

m2
t

(rt + vt)
+ 2mt)−

∑
t∈U

dt. (9)

By tuning λ, the mistake bound for structured NAROW is

D ≤
∑

t∈M∪U

ℓt(u) +

√√√√∥u∥2 +
∑

t:bvt>1

bvt(u
Txt)

2

(rt + vt)

×

√√√√ ∑
t∈M∪U

(min(
1

b
, vt)−

m2
t

(rt + vt)
+ 2mt)−

∑
t∈U

dt. (10)

Note that because the number of features in g2p conversion
is large, we employ a diagonal matrix as the second order
information matrix using diag

{
Σ−1

t

}
instead of Σ−1

t .

For the inequality vt ≥ 1 in Eq.(7), the vt is not too small
when b is a small value. So we attempt to satisfy the inequal-
ity by setting b to a small value. 1

1Note that g2p conversion employs rich feature set and therefore the in-
equality is almost always satisfied.
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Table 1. Dataset used in the experiment on the g2p
task; dataset name (Dataset), the number of grapheme and
phoneme symbols (g/p), vocabulary sizes of training data
(Train), development data (Dev), and test data (Test) and the
number of trials of cross-validation (K-fold)

Dataset g/p Vocabulary size
Train Dev Test K-fold

NETtalk 26/50 17595 1000 1000 10
Brulex 40/39 23353 1373 2747 5
CELEX 26/53 39995 15000 5000 1English
CMUdict 27/39 100886 5941 12000 2

Table 2. Parameter settings for the experiment.

Sequitur DirecTL+ SAROW SNAROW
joint n-gram 7 5 5 5
context - 6 6 6window
N -best - 5 5 5hypotheses
hyperpara- - - 500, -meter r 1000,1500
hyperpara- - - - 0.0075,
meter b 0.01,0.0125
beam width - 50 50 50

5. EXPERIMENT AND RESULT

We evaluated our structured NAROW on the g2p task. Table
1 shows datasets employed in the experiment. The develop-
ment data is employed to determine the optimal number of
training iterations. For datasets in Table 1, NETtalk (English)
and Brulex (French) were obtained from the Pascal Letter-
to-Phoneme Conversion Challenge2. CMUdict (English) and
CELEX (English) were also obtained from their correspond-
ing Web pages3 4. We attempted to faithfully follow the con-
vention in [9] in terms of data exclusion and data split, except
extracting development data from training data.

We employed Sequitur5, DirecTL+6 and structured AROW
(SAROW) as baseline g2p conversion tools in this experi-
ment. Sequitur is based on the generative model employing
joint n-grams for graphemes and phonemes. DirecTL+ uses
structured learning based on MIRA. The implementation of
SAROW and structured NAROW (SNAROW) used in this
experiment is implemented in slearp7. DirecTL+, SAROW
and SNAROW, which is our proposed approach, employed
context features, chain features, and joint n-gram features.
For alignment used in DirecTL+, SAROW and SNAROW,

2http://pascallin.ecs.soton.ac.uk/Challenges/PRONALSYL/Datasets
3http://www.speech.cs.cmu.edu/cgi-bin/cmudict
4http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC96L14
5http://sequitur.info/
6http://code.google.com/p/directl-p/
7http://sourceforge.jp/projects/slearp/

Table 3. Evaluation result for phoneme error rate (PER) and
word error rate (WER) in the g2p task. Values on NETtalk,
Brulex and CMUdict in this table are obtained by averaging
results on each cross-validation. The best performance and
performances that have no significant difference according to
Paired Bootstrap Resampling [22] at a level of 0.05 over the
best performance are written in bold.

Dataset Measure Sequitur DirecTL+ SAROW NAROW
NETtalk PER(%) 7.71 6.70 6.75 6.53

WER(%) 31.6 28.18 28.66 27.97
Brulex PER(%) 1.26 1.03 1.09 0.99

WER(%) 6.57 5.24 5.59 5.14
CELEX PER(%) 2.62 2.39 2.51 2.30
English WER(%) 12.15 11.07 11.81 11.17
CMUdict PER(%) 6.77 6.19 6.15 6.11

WER(%) 28.55 26.35 26.48 26.46

we used the unconstrained many-to-many alignment method
of [21] as implemented in mpaligner8. The context window
size, joint n-gram size, hyperparameter r and N -best hy-
potheses for training were determined based on our previous
work [12], except beam width for beam-search pruning and
hyperparameter b. Table 2 shows their details. The train-
ing iterations, the hyperparameter r and b are determined by
phoneme error rate on the development data.

Table 3 shows the evaluation result on the g2p task. From
Table 3, for the PER, SNAROW improved over all other ap-
proaches with a significant difference on all datasets except
CMUdict according to Paired Bootstrap Resampling [22] at
a level of 0.05. The error rate reduction (ERR) over MIRA
was 2.5% on NETtalk, 3.9% on Brulex, 3.8% on CELEX and
1.3% on CMUdict. Thus, we can see that replacing structured
AROW with structured NAROW is effective on real datasets,
even the relatively clean ones used in our experiments.

6. CONCLUSION

We proposed structured NAROW, extending NAROW to
structured learning, and evaluated it on the g2p task. Struc-
tured NAROW solves structured AROW’s problems by
choosing a better value of the hyperparameter r on each
update so that the mistake bound is low and avoiding up-
dating the second-moment when features for input data have
high confidence. In the experiment, our proposed approach
significantly improved over MIRA, with consistent ERRs of
1.3-3.8% in PER on a variety of dictionaries.
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