
A NOVEL PITCH DECOMPOSITION METHOD FOR THE GENERALIZED LINEAR

ALIGNMENT MODEL

Mahsa Sadat Elyasi Langarani and Esther Klabbers and Jan van Santen

Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR, USA
elyasila@ohsu.edu, klabbers@ohsu.edu, vansantj@ohsu.edu

ABSTRACT

Superpositional models of intonation typically propose decompos-

ing fundamental frequency (F0) contours into phrase curves and ac-

cent curves, aligned with phrases and left-headed feet, respectively.

Extracting these component curves from F0 contours without mak-

ing undue assumptions is challenging. We propose a novel method

for decomposing pitch curves, based on the assumption that accent

curves can be described by combining skewed normal distributions

and sigmoid functions. In contrast to an earlier pitch decomposition

algorithm (“PRISM”), this allows for simple joint optimization of

phrase and accent curve parameters, using fewer parameters. The

proposed method was evaluated on three speech corpora containing:

(1) synthetically generated pitch curves, (2) all-sonorant utterances,

and (3) utterances containing both sonorant and non-sonorant speech

sounds. The root weighted mean squared error is small, and, on

the corpus for which comparable data are available, is significantly

smaller than for PRISM.

Index Terms: text-to-speech synthesis, prosody modeling, superpo-

sitional model

1. INTRODUCTION

In text-to-speech synthesis, generating expressive, meaningful fun-

damental frequency or F0 contours is still a challenge. For a project

in our Center on generating personalized intonation using a small

amount of single-speaker training data, a compact quantitative char-

acterization of intonation contours is needed. For this purpose, we

use models in the tradition of superpositional intonation models.

These models posit that F0 contours can be described as an overlay

(or superposition) of component contours. Equation 1 is a formaliza-

tion of this model, called the General Superpositional Model (GSM).

F0(t) = ⊕
c∈C

⊕
k∈c

fc,k(t) (1)

This formulation generalizes several models such as Öhman’s

model [1], the Fujisaki model [2, 3], and the Superposition of Func-

tional Contours model (SFC, 4).

The Generalized Linear Alignment model (GLAM, 5, 6, 7) is a

– still very general – special case of the GSM, where the⊕-operator

represents addition of component curves, C is the set of two curve

classes representing accent and phrase curves, c is a particular curve
class ofC, and k is an individual curve of c’s class. The phrase curve
is the underlying curve that spans an entire phrase. It provides infor-

mation about the baseline pitch and the global declination. The ac-

cent curves span stress-timed feet [8] and they convey the amount and

type of emphasis exerted on accented syllables. A foot is defined as

an accented syllable followed by zero or more unaccented syllables

This material is based upon work supported by the National Science
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until the next accented syllable or a phrase boundary. In the GLAM,

phrase curves are modeled as piece-wise linear (or log-linear) curves

consisting of a start point, an inflection point at the start of the sylla-

ble containing the nuclear pitch accent, and an end point[9]. Accent

curves are modeled as smooth single-peaked curves, but left unspec-

ified otherwise.

The usefulness of this superpositional approach is supported by

studies where the model is used to characterize prosodic characteris-

tics of a particular speaker, emotion, or sentence [10, 11, 12], and by

studies on speech synthesis to produce more natural sounding pitch

contours than certain other approaches [13, 7].

Decomposing a natural F0 contour into its component curves is

challenging for two reasons. First, unless certain assumptions are

made, there is no unique solution to the decomposition of a given

F0 contour because the accent curves and phrase curves can trade to

produce the same F0 contour. Second, the F0 contour is often not

smooth, interrupted by non-sonorant sounds or pauses, or perturbed

by segmental effects [14].

The central goal of this paper is to describe a novel algo-

rithm for decomposition of smoothed F0 contours into their com-

ponent curves, based on the GLAM in conjunction with relatively

mild assumptions about the shapes of the underlying curves. The

first implementation of a similar pitch decomposition algorithm was

PRISM [15, 12, 16, 17]. It used Gaussian templates via parametrized

time warp functions for modeling the accent curves. PRISM showed

promising results. But, as we shall see, the specific implementation

of the algorithm had some drawbacks.

In Section 2.1, we will summarize the PRISM algorithm and in

Section 2.2, we will discuss our novel decomposition algorithm. Fi-

nally, in Section 3 we discuss results of using the novel decomposi-

tion algorithm on three speech corpora and perform a direct compari-

son between PRISM and the new algorithm on a small speech corpus

containing both voiced and unvoiced segments of speech.

2. PITCH DECOMPOSITION

2.1. PRISM

PRISM is a pitch decomposition algorithm developed by

Mishra [12]. Mishra showed that decomposed phrase and ac-

cent curves could be used in speech synthesis to create F0 contours

that sounded more natural than concatenated natural F0 contours.

However, most of the corpora on which PRISM was tested were

designed not for general-purpose speech synthesis development but

to exercise the method in a corpus with carefully controlled voicing

and accentuation patterns. A second experiment testing perceived

prominence by systematically varying GLAM parameters showed

there was a significant correlation between accent curve height and

perceived prominence, supporting the perceptual significance of the

component curves as extracted by he method.
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a: Rise-Fall b: Y/N-Question c: Continuation

Fig. 1. Three accent types in the novel decomposition algorithm

However, there are certain aspects of PRISM that must be exam-

ined more closely. First, the algorithm assumes the phrase curve is

piecewise-linear, consisting of foot-length line segments instead of

the two line segments allowed by GLAM. This introduces additional

parameters in the process (n+ 1 instead of 3 parameters per phrase

curve containing n feet), and may also undermine the perceptual rel-

evance of the phrase curve because there is no global declination.

Second, PRISM allows negative accent curves to model F0 values

that fall under the phrase curve. American English generally does not

have negative accents. Third, PRISM uses 9 parameters for estimat-

ing each accent, which, given the generally regular shapes of local

pitch excursions should not be necessary – a few parameters for, e.g.,

location, width, and asymmetry, should suffice. Fourth, PRISM op-

timizes the phrase and accent curves separately, which invites local

minimum problems.

2.2. The novel decomposition algorithm

The new algorithm optimizes phrase and accent curve parameters si-

multaneously. After initialization, the parameters for phrase and ac-

cent curves are optimized using Sequential Least Squares Program-

ming (SLSQP, 18) which is a slight re-implementation of an algo-

rithm proposed by Kraft [19]. There is an iterative learning process

to minimize the fitting error, which is defined as the root weighted

mean square error (RWMSE) as seen in Equation 2, where the weight

w is computed as the multiplication of the voicing flag and the sig-

nal energy, X represents the smoothed F0 values and Y represents

the estimated F0 values after decomposition.

RWMSE(Xi, Yi) =

√∑
wi(Xi − Yi)2∑

wi
(2)

The process is as follows: First, pitch values are extracted us-

ing Normalized Cross-Correlation (NCC, 20) coupled with a Viterbi

search to find perceptually relevant smooth pitch curves. This led to

better results than using the standard get_f0 algorithm.

Second, the phrase curve parameters are initialized. Each phrase

has three parameters for the start, inflection, and end point of the

phrase. If the speech is voiced in those areas, the actual F0 values

are used as an initial guess. If the start of the phrase is unvoiced,

the initial phrase start value is set to match the inflection point. If

the end of the phrase is unvoiced, the initial phrase end value is set

to match the last F0 value in the phrase. These points are adjusted

downwards if there are any F0 values falling under the phrase curve

to avoid having to model negative accent curves. The phrase curve

is constructed by linear interpolation between the three points ps, pi,
and pe (Equation 3).

P (t) = interpolate(ps, pi, pe) (3)

The phrase curves are subtracted from the F0 contour to obtain

the initial values for the accent curves.

Third, we perform the curve fitting. Figure 1 shows the three

accent types used: rise-fall, yes/no question, and continuation. The

rise-fall accent is modeled using a skewed normal distribution with

four parameters (Equation 4, A stands for the amplitude value of the

accent curve, which controls the height of the curve, ξ and ω specify

the location and scale, andα determines the skewness of the distribu-

tion). The question intonation is modeled using a sigmoid function

with three parameters (Equation 5, B stands for the amplitude value

of the sigmoid, β and γ specify the slope and location of the steep-

est slope) and the continuation accent is modeled as a combination of

the skewed normal distribution and the sigmoid function using seven

parameters (Equation 6).

f(t) = A
2

ω
φ(

t− ξ

ω
)Φ(α(

t− ξ

ω
)) (4)

g(β(t− γ)) = B
1

1 + e−β(t−γ)
(5)

h(t) = f(t) + g(β(t− γ)) (6)

To initialize a rise-fall accent we compute the mean (Equation 7),

the variance (Equation 8), and the skewness (Equation 9) of the F0

values in a foot. It should be pointed out that accent curves in each

phrase can overlap with each other, but the peak location of each

accent curve is limited by the boundary of the foot they belong to.

mean of f(t) : ξ + ωδ

√
2

π
where δ =

α√
1 + α2

(7)

variance of f(t) : ω2

(
1− 2δ2

π

)
(8)

skewness of f(t) :
4− π

2

(
δ
√

2
π

)3

(
1− 2δ2

π

)3/2
(9)

Using Equations 1, 3, 4, 5, and 6, we can rewrite the fundamental

frequency based on our function curves (Equation 10). The parame-

ters a and b are binary to toggle between the three accent types. This
equation is optimized using SLSQP.

F0(t) = P (t)+

n∑
i=0

(bi(aif(t)+(1−ai)g(t))+(1−bi)h(t)) (10)

3. EXPERIMENTS

3.1. Decomposing synthetic pitch contours

The first experiment with the novel pitch decomposition algorithm

was a proof-of-concept using synthetically generated F0 contours.

The contours were generated using our text-to-speech system that

uses the GLAM model to generate pitch contours. We generated

synthetic curves for 229 sentences that make up the CSLU Empha-

sis Protocol [21]. This protocol was designed to elicit F0 contours

produced with various linguistic and prosodic features. It prescribes

which syllables are accented, where each foot starts and ends, and

where phrase boundaries occur. Finally, each utterance in the pro-

tocol has a target word that is spoken with a prescribed degree of

emphasis. The protocol systematically varies the accent type (stan-

dard vs contrastive), the sentence type (declarative, wh-question, or

yes-no question), the number of syllables in the foot (1, 2, 3 or more),

and the phrasal position of the target word (initial, medial, or final).

An example sentence of a wh-question with feet boundaries marked
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with brackets and the target word marked in all-caps: [Will we] [re-

ally know] [MARIO], [when we’re in] [Maine?].

Resynthesis with the new pitch contours as created by decom-

position and superposition of the estimated phrase and accent curves

showed a very small overall RWMSE of 2.5 Hz. While humans can

hear very fine distinctions between two pure tones when listening to

them sequentially at a short time interval, in a longer sentence this

type of error is not noticeable. Klatt noted that subjects could hear a

0.3 Hz difference in a constant F0 contour, but when the synthetic F0

contour was a linear descending ramp (32 Hz/sec) the just-noticeable

difference (jnd) slipped to 2.0 Hz [22]. Comparing perceived pitch

in two sentences, it was found by ’t Hart [23] that there was signifi-

cant variability in the subjects’ sensitivity to pitch differences. Some

subjects were able to perceive differences of 1.5 - 2 semitones where

others were only able to hear differences when the pitch was more

than 4 semitones apart. They concluded that only differences of more

than 3 semitones play a part in communicative situations. Semitones

are measured on a perceptual scale and the actual frequency differ-

ence depends on the frequency range. Suppose the base frequency

is 200 Hz, then a 2 semitone difference corresponds to a frequency

differential of 24 Hz. But if the base frequency is really high, say 800

Hz, then the same 2 semitone differential corresponds to a frequency

differential of 97 Hz.

The slight discrepancy between the generated accent curves and

the decomposed curves is due to the fact that the accent curves gen-

erated by GLAM are asymmetric curves cobbled together via co-

sine interpolation, whereas the new decomposition algorithm uses a

smooth skewed normal distribution. Not only do we suspect that this

discrepancy is inaudible, we also suggest that the skewed normal dis-

tribution can provide accurate approximations to a broader range of

curves.

3.2. Decomposing all-sonorant speech

The next experiment involved actual recordings using all-sonorant

speech from the same CSLU Emphasis Protocol. One male speaker

spoke a subset of 61 sentences in this protocol. Since the foot struc-

ture was pre-determined, labeling the feet was straightforward. The

recordings were first forced-aligned to the phonemes using the CSLU

Toolkit [24]. Then, the label boundaries were manually corrected

and foot boundaries were inserted based on the accentuation patterns.

Obviously, this manual process is in need of automation.

Figure 2 shows an example pitch contour from the CSLU Em-

phasis Protocol for a wh-question with rising at the end. Because the

sentence has three feet, there are three pitch accents in the phrase.

The dotted lines show the initial parameter estimates, and the solid

lines are the final predictions. The green lines represent the phrase

curve, the magenta lines represent the accent curves and the blue line

represents the sum of these, forming the final predicted F0 contour.

Wewere only able to decompose a subset of the corpus using PRISM,

so we are reporting results for that subset only (32 sentences consist-

ing of 48 phrases). The RWMSE for decomposition using PRISM is

5.40 Hz. The RWMSE for the novel decomposition algorithm is 5.85

Hz. A two-tailed t-test revealed the difference between PRISM and

the new algorithm not to be significant (t(48) = 0.530, p = 0.597).

3.3. Pitch decomposition of recordings with voiced and unvoiced

speech sounds

In the previous experiments pitch values were available for all frames

in the speech recordings, so that we could apply our optimization on

continuous F0 curves. A challenge for pitch decomposition of nat-

ural speech recordings is the presence of unvoiced regions, pauses
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Fig. 2. Example pitch contour and decomposition for a wh-question

where the pitch rises at the end: [Why will] [Molly] [run in Maine?]

where there are no pitch values, and segmental perturbations. A com-

mon way to solve this issue is to use linear interpolation between

voiced areas to fill in unvoiced areas. One side-effect of having un-

voiced segments in speech is that an unvoiced phoneme preceding

a voiced phoneme can cause a segmental perturbation at the start

of the voiced phoneme, where the observed F0 values are slightly

higher than they should be [14]. Thus, linear interpolation will give

suboptimal results. Also, when a phrase starts or ends with unvoiced

segments, it is challenging to find the best initialization points of the

phrase curve. As it turns out, our use of weights in our RWMSE

cost function substantially addresses these problems as they occur

primarily in regions with low energy or voicing probability.

In order to test the novel decomposition algorithm on a speech

corpus with voiced and unvoiced segments and compare it directly

with PRISM, we decided to use the CSLU affect corpus which has

been analyzed previously using PRISM [10]. This corpus was not

specifically designed for synthesis purposes, but was created to study

different affects using the same affect-neutral text for each sentence

to be spoken in four different affects (Angry, Fearful, Happy, and

Sad). The paper focused on one female child actor reading a total of

24 sentences in each affect (96 utterances total).  The sentences are

fairly short, consisting of a single phrase and 2-5 words in a phrase.

The correct affect was prompted by vignettes that preceded each sen-

tence. For this particular speaker, the pitch ranged from 200-800 Hz.

Figure 3 represents the pitch decomposition of the sentence “No

way” into the component curves, for the four affect types based on

the novel decomposition algorithm (Figure 3, middle row) versus

PRISM (Fig. 3, top row). The bottom row represents the signal

energy x voicing flag which is used as a weight on the F0 values.

PRISM detected negative accent curves for three types of affects:

Happy, Fearful, and Sad. The negative accent in the last foot of the

Happy sentence makes it a better fit between the actualF0 values and

the decomposed values. However, there are doubts regarding the use

of negative accents in American English.

In the middle and bottom rows of Figure 3, the magenta area at

the end of the F0 curve represents a pitch rise with a weak signal

amplitude. We hypothesize that this pitch rise is not perceptually

relevant and as such we can ignore those pitch values in our decom-

position. We added a threshold to the weight that is applied to the

F0 values to remove these less reliable pitch values. The RWMSE

for our new decomposition approach and PRISM are shown in Fig-

ure 4. The novel pitch decomposition algorithm performs better than

PRISM for most of the affects. The total RWMSE for the corpus is

2605



0 500 1000 1500 2000 2500
Time (ms)

100

0

100

200

300

400

500

600

700

800

H
z

0 200 400 600 800 1000 1200 1400
Time (ms)

50

0

50

100

150

200

250

300

350

400

H
z

0 200 400 600 800 1000 1200 1400 1600
Time (ms)

100

0

100

200

300

400

500

600

H
z

0 200 400 600 800 1000 1200 1400
Time (ms)

50

0

50

100

150

200

250

300

350

400

H
z

0 500 1000 1500 2000 2500
Time (ms)

100

0

100

200

300

400

500

600

700

800

H
z

0 200 400 600 800 1000 1200 1400
Time (ms)

50

0

50

100

150

200

250

300

350

400

H
z

0 200 400 600 800 1000 1200 1400 1600
Time (ms)

100

0

100

200

300

400

500

600

H
z

0 200 400 600 800 1000 1200 1400
Time (ms)

50

0

50

100

150

200

250

300

350

400

H
z

0 500 1000 1500 2000 2500
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400 1600
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

a. Angry b. Fearful c. Happy d. Sad

Fig. 3. Decomposition of the sentence “No way” for the four affect types (Angry, Fearful, Happy, and Sad). The first row represents the

PRISM decomposition. The second row uses the novel decomposition algorithm. The third row shows the weight function (signal energy x

voicing flag). The blue lines represent the estimated pitch contour, green lines represent the estimated phrase curves, magenta lines represent

the estimated accent curves. The raw pitch is represented by red dots. The orange vertical lines represent the foot boundaries.
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lower for our algorithm. The frequency range of the angry and fear-

ful utterances cover the entire frequency range of the speaker (200

Hz-800Hz) and there are a few points specifically around each accent

peak that have high weight (Figure 3a) and as a result these points

have more effect on the RWMSE. But since pitch perception does not

follow a linear scale, pitch discrepancies at higher frequencies are

likely to be less audible. Only a perceptual experiment can tell how

well both pitch decomposition algorithms can reconstruct the origi-

nal F0 contour. The average difference between the RWMSE of the

two methods is 5.16 Hz. We applied a one-sample two-tailed t-test to

determine whether this difference is significant. The results showed

that the novel decomposition algorithm performs significantly better

(t(95) = 2.22, p = 0.027).

4. CONCLUSIONS

We proposed a novel pitch decomposition algorithm to decompose

F0 contours into phrase and accent curves in accordance with the

Generalized Linear Alignment model (GLAM), a superpositional

model that makes relatively mild assumptions about the shapes of

the underlying component curves. We compared the algorithm with

a previous estimation method, PRISM, and found that we were able

to produce equivalent or better results using fewer parameters.

We are now using this method not only for projects on individu-

alized speech synthesis for Speech Generating Devices, but also for

general purpose synthesis projects based on our multi-level unit se-

quence approach to prosodic modeling [7].

For this method to serve as a broadly usable speech analysis tool,

e.g., for emotion recognition or speaker identification, we have to

demonstrate that it can be used in speech samples that aremore varied

and spontaneous, and less structured, than the corpora used in the

present study. Usage as an analytic tool will also require automatic

detection of foot boundaries, most likely requiring the integration of

our method with boundary detection as well as the incorporation of

other speech parameters such as energy, jitter, and shimmer.
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