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ABSTRACT

HMM-based speech synthesis generally suffers from typical buzzi-
ness due to over-simplified excitation modeling of voiced speech. In
order to alleviate this effect, several studies have proposed various
new excitation models. No consensus has however been reached on
what is the perceptual importance of the accurate modeling of the
periodic and aperiodic components of voiced speech, and to what
extent they separately contribute in improving naturalness. This pa-
per considers a generalized mixed excitation modeling, common to
various existing approaches, in which both periodic and aperiodic
components coexist. At least three main factors may alter the quality
of synthesis: periodic waveform, noise spectral weighting, and noise
time envelope. Based on a large subjective evaluation, the goal of
this paper is threefold: i) to evaluate the relative perceptual impor-
tance of each factor, ii) to investigate what is the most appropriate
method to model the periodic and aperiodic components, and iii) to
provide prospective clues for future work in excitation modeling.

Index Terms— HMM-based speech synthesis, excitation mod-
eling, glottal flow, residual signal

1. INTRODUCTION

Statistical parametric speech synthesis based on hidden Markov
models (HMMs) [1] emerged this last decade as a promising tech-
nique for the automatic generation of speech from text. This ap-
proach exhibits several advantages over concatenative speech syn-
thesis approach [2]: flexibility to change the voice characteristics
[3, 4, 5, 6], reduced memory footprint [7, 8], and enhanced robust-
ness [9]. Nonetheless, although some progress has been achieved
these last years, its main flaw is a degraded speech quality. This
can be explained by two main factors: i) the synthesis relies on a
parametric representation of the speech signal which results in a
typical buzziness; ii) the synthesis relies on a statistical modeling
of a given speech database, which results in a typical muffledness
caused by oversmoothed generated trajectories.

This paper addresses the first issue and aims to enhance the natu-
ralness of synthesized speech by improving the excitation modeling.
In general, the modeling of speech is based on the source-filter ap-
proach. In this framework, two options are possible according to
what is considered to be the source and the filter. In the first case,
the source is the glottal (air) flow as physiologically produced by the
vocal organs, and the filter refers to the vocal tract response. Be-
yond the physiological motivation, this approach has the advantage

T. Drugman is supported by FNRS. T. Raitio is supported by the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement n◦ 287678. The authors would like to thank Vasilis
Karaiskos for running the listening tests.

to be more flexible, as proper modifications of the glottal contribu-
tion are expected to reflect changes in voice quality. Nonetheless,
this approach requires the reliable and accurate separation of these
components from each other using glottal inverse filtering, which is
a difficult inverse problem [10, 11]. In the second case, the filter cor-
responds to the overall spectral envelope of speech and the excitation
is the residual signal obtained by feeding the speech signal through
the inverse of the estimated filter. The residual signal has the ad-
vantage to be easily obtained, however its amplitude spectrum is by
definition flat and the information about the glottal spectral contribu-
tion is inextricably mixed in the filter component. As a consequence,
its flexibility for speech modifications is more limited.

In all cases, separating the source and filter contribution is im-
portant as it can lead to their distinct characterization and modeling.
Methods parameterizing the filter, such as the well-known linear pre-
diction (LP) or mel-cepstral features [12], are widely used. On the
contrary, methods modeling the excitation signal are still not well
established and the accurate and perceptually relevant modeling of
the excitation would benefit many speech processing areas.

The basic excitation model makes use of either a quasi-periodic
impulse train for voiced speech, or white noise for unvoiced speech.
The simple representation of voiced speech makes the resulting syn-
thesis sound buzzy due to zero-phase nature of the excitation. Vari-
ous studies have focused on improving the excitation model by mix-
ing periodic excitation with aperiodic noise, such as in the mixed ex-
citation (ME) [13] approach. In ME, voiced excitation is composed
of both periodic and aperiodic components of which relative magni-
tudes are controlled by band-pass voicing strengths. In a similar way,
a ME consisting of a set of high-order state-dependent filters de-
rived through a closed-loop procedure was proposed in [14]. In [15],
a hybrid approach makes use of a codebook of pitch-synchronous
residual frames which are selected at synthesis time according to the
down-sampled version of the excitation. In [16, 17], the determinis-
tic plus stochastic model (DSM) of the residual signal is proposed.
DSM excitation consists of two components: the deterministic wave-
form called eigenresidual, which is obtained by principal component
analysis (PCA) on a set of pitch-synchronous residual frames, and
an aperiodic excitation delimited by maximum voiced frequency Fm

and modulated in time according to a speaker-specific time envelope.
In parallel, similar improvements using a glottal flow modeling

have been introduced. The approach described in [18] incorporates
the Liljencrants–Fant (LF) [19] model so as to reduce the buzziness
and increase the flexibility. A natural glottal flow pulse estimated by
glottal inverse filtering from a sustained vowel is modified according
to voice source features and mixed with noise in the so-called Glot-
tHMM approach presented in [20] and further refined in [21]. A syn-
thesis approach using LF model was also introduced in [22]. In [23],
a glottal source pulse library is extracted from natural speech and
pulses are selected according to voice source features for synthesis.
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All these techniques (modeling either residual or glottal flow) have
been shown to provide a higher naturalness in HMM-based speech
synthesis, compared to the traditional pulse excitation.

Despite all the advances in excitation modeling, no consensus
has been reached yet on the perceptual effect of each component in
voice source modeling, and to what extent they separately contribute
in improving naturalness. In the frame of HMM-based speech syn-
thesis, this paper investigates the perceptual impact of the three main
factors in excitation modeling: waveform used for periodic excita-
tion, spectral weighting between the periodic and aperiodic compo-
nents, and the envelope used for the time modulation of the noise.
The goal of this paper is threefold: i) to evaluate the relative impor-
tance each component in modeling the excitation, ii) to investigate
what is the most appropriate method to model these components, iii)
to provide prospective clues for future work in excitation modeling.

The paper is structured as follows. Section 2 presents the gen-
eral vocoding framework used in various existing approaches and de-
scribes the alternatives considered throughout this paper. Section 3
deals with the experimental protocol, providing details about the im-
plementation of our HMM-based speech synthesizers and describing
the subjective evaluation and its results. Section 4 finally discusses
the implications of the study and concludes the paper.

2. GENERAL VOCODING FRAMEWORK

The great majority of excitation models rely on a similar mixed ex-
citation model in which both periodic and aperiodic components co-
exist during the production of voiced sounds. The workflow of this
generalized vocoder is displayed in Fig. 1. The periodic contribution
of the excitation ep(t) is obtained from a specific waveform whose
duration is adapted to the current F0 value, and which is then filtered
using some aperiodicity measurements. As for the aperiodic excita-
tion component ea(t), it results from a white Gaussian noise that
is spectrally modified using these same aperiodicity measurements
and modulated in time using a given envelope. Note that all this
process is achieved pitch-synchronously. The two components ep(t)
and ea(t) are then summed up and the pitch-synchronous windowed
frames are overlap-added. The resulting excitation contribution fi-
nally goes through the filter to give the speech signal. The three
main factors impacting the performance of this generalized excita-
tion model are now studied in the remainder of this paper: periodic
waveform, noise spectral weighting and noise envelope.

2.1. Periodic waveform

In the simplest source-filter vocoder, Dirac pulses at fundamental
period intervals are used to create the voiced excitation. Usually
improvements in excitation modeling are compared with either this
simple model or the mixed excitation [13], which is used e.g. in the
most commonly used vocoder STRAIGHT [24, 25]. Improvements
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Fig. 1. Workflow of generalized vocoder using mixed excitation.
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Fig. 2. Natural residual excitation frame (upper signal) and eigen-
residual (lower signal) for speaker AWB.

over the simple excitation are rather easy to achieve either by us-
ing more natural periodic waveform or by mixing the periodic com-
ponent with noise. However, the comparison between more com-
plex methods (e.g. STRAIGHT) may be ambiguous, since evalua-
tions are usually made between whole vocoder architectures using
different parameterization methods, parameters representations, and
HMM training. Also, the contributions of the periodic and aperiodic
components are usually left undetermined.

Only few studies have addressed the perceptual differences be-
tween deterministic waveforms other than impulse. Experiments in
[26] have shown that a mean glottal flow pulse (similar to eigenresid-
ual in [17]) was rated better in quality than excitation using selection
of natural pulses and equal to a pulse reconstructed from 12 PCA
components. The latter comparison was also informally done us-
ing residual waveform in [17] with the same conclusion that using
more components for modeling does not improve quality. In creaky
voice synthesis [27], the type of deterministic waveform has also
been shown to have relevant perceptual effect. However, it is still
not clear what is the perceptual effect of the type of deterministic
waveform on speech quality in general.

In this paper, we consider the reconstruction of the residual sig-
nal with three possible periodic waveforms: i) the Dirac impulse as
used in the simplest vocoder; ii) a natural excitation residual frame;
iii) speaker-dependent eigenresidual as proposed in [17]. Note that
the choice of the natural residual frame was not arbitrary and resulted
from the consideration of several criteria: a) having a low pitch to
avoid as much as possible up-sampling to the target F0 (as this will
cause energy holes in high frequencies); b) its amplitude spectrum
must be as flat as possible to avoid artefacts due to residual reso-
nances; c) having a clear discontinuity at the glottal closure instant
(GCI). The natural residual and eigenresidual for the male speaker
considered in this paper are illustrated in Fig. 2.

2.2. Noise spectral weighting

In order to reduce buzziness caused by the zero-phase excitation,
it has been shown to be beneficial to adopt an approach in which
both periodic and aperiodic components may coexist [13]. Two main
techniques were proposed in the literature for this purpose. The first
one relies on a multiband approach where, for each spectral band, the
energy ratio between the periodic and aperiodic contributions is con-
trolled by aperiodicity measurements. These measurements can be
computed in various ways. In [13], they consist of correlation coeffi-
cients calculated in each band, while in [25, 23] they are determined
based on the ratio between the upper and lower smoothed spectral
envelopes. The second technique for spectral weighting makes use
of a maximum voiced frequency (Fm) which demarcates the bound-
ary between the periodic component (which holds only in the low

261



frequencies) and the aperiodic component (which holds only in the
high frequencies). This idea originates from the multiband excitation
vocoder [28], which was was later integrated into several methods
for excitation modeling in HMM-based speech synthesis [16, 22].

The perceptual effect of these methods has not been studied in
the context of HMM-based speech synthesis, Thus, four options for
spectral weighting are investigated in this paper: i) the aperiodic
component is discarded and the excitation consists only of the peri-
odic contribution; ii) use of a static maximum voiced frequency Fm

fixed to 4 kHz as is done in [29] and [17]; iii) use of dynamic Fm

value estimated using the algorithm described in [30]; iv) use of the
harmonic-to-noise ratio (HNR) measurements proposed in [23].

2.3. Envelope for noise modulation

In addition to modeling the spectral characteristics of the noise, some
studies have addressed its time properties. The motivation for this
arises from the observation that the time distribution of the noise
is not uniform and exhibits a synchronization with the glottal cy-
cle. In [30], a pitch-synchronous triangular envelope is proposed. In
[31], authors compare the triangular and Hilbert energy envelopes
in the frame of HNM and report a slight improvement. In [32], an
alternative parametric representation of a triangular envelope is pro-
posed. It is however worth mentioning that none of these works have
been tested in HMM-based speech synthesis, which requires slowly-
varying parameter trajectories for a proper statistical modeling. Fi-
nally, a speaker-dependent noise waveform envelope was proposed
in [17], which is extracted by averaging GCI-synchronous Hilbert
envelopes of the stochastic part of the excitation.

Three possible noise envelopes are studied in this paper: i) uni-
form distribution; ii) the triangular window proposed in [30]; iii) the
speaker-dependent Hilbert envelope proposed in [17]. An illustra-
tion of this latter waveform is shown in Fig. 3 for the female speaker
considered in this study.

3. EXPERIMENTS

3.1. HMM-based voice building

In order to find out the perceptual effect of each of the studied exci-
tation component, HMM-based voices were built and used in subjec-
tive listening tests. To prevent perceptual effects due to other factors
than the ones in study, a single system architecture was used, capable
of producing all the different component combinations. The speech
features used to train the HMMs are depicted in Table 1. In feature
extraction, fundamental frequency (F0) and HNR were extracted us-
ing the GlottHMM vocoder [21, 23] while SPTK 3.6 [33] was used
to extract speech spectrum. The spectrum was estimated using a 30th
order mel-generalised cepstral (MGC) analysis [34] with α = 0.42
and γ = −1/3. MGCs were then converted to line spectral fre-
quencies (LSF) for better parameter representation for HMM train-
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Fig. 3. Speaker-dependent Hilbert envelope for speaker SLT.

ing. Fm was estimated by the algorithm described in [30]. All other
data such as the periodic waveform or the noise envelope have been
extracted as explained in Section 2 by a GCI-synchronous analysis,
where GCIs are detected using the SEDREAMS algorithm [35].

The HTS 2.1 HMM architecture [36] was used for training the
features using F0 and spectrum for the alignment. In synthesis,
parameters were generated considering global variance [37] except
for the spectrum (due to unstability issues with MGCs). Excitation
was generated using the vocoder described in Section 2, where the
excitation waveform and noise modeling were varied according to
the desired setup. Finally, the excitation was filtered with the mel-
generalised log spectral approximation (MGLSA) filter [38].

Two databases recorded for the purpose of developing text-to-
speech (TTS) synthesis were used to build voices for the experi-
ments. These voices are Scottish English male AWB and US En-
glish female SLT from the ARCTIC database [39], which consist of
1,138 and 1,132 sentences, respectively. 1,000 sentences were used
for training both voices and the rest was used for testing.

3.2. Subjective evaluations

Subjective evaluation was performed in three separate steps in order
to find out the effect of each component and also their possible inter-
actions. The idea was to first select the best noise spectral weighting
according to a subjective evaluation. Then, the best spectral weight-
ing method according to the first evaluation is used to study the ef-
fect of the noise time envelope. Finally, in the third test, both the
best noise spectral weighting and the best time envelope are used in
the study of the effect of the periodic waveform.

Comparison category rating (CCR) test was used in order to de-
termine the quality difference between the systems. In CCR test,
listeners are presented with speech sample pairs from which listen-
ers rate the difference of the two samples on the comparison mean
opinion score (CMOS) scale, which is a seven-point scale ranging
from “much worse” (−3) to “much better” (3). All possible system
combinations were evaluated (e.g. for three systems: 1–2, 1–3, 2–3)
in both directions (e.g. 1–2 and 2–1). Thus, there were 6 compar-
isons per sample for the 3-system test and 12 for the 4-system test.
The CCR test responses were summarized by calculating the mean
scores and 95% confidence intervals for each method. The mean
yields the order of preference and distances between all the methods
(i.e., the amount of preference relative to each other). A Wilcoxon
signed-rank test was finally used for further testing the significance
between the means of each method pair. The systems used across
the 3 CCR tests are summarized in Table 2 in concordance with the
methods explained in Section 2.

All test samples (137 for AWB and 132 for SLT) were synthe-
sized for the three tests using each system (4 + 3 + 3 = 10 systems).
Thus, a total of 2,690 (10 × (137 + 132)) samples were synthesized.
In order to reduce the workload on participants, 5 sentences from
each speaker were randomly selected for each participant and pre-
sented to them in each test. Also ten null pairs (identical sample
pair) were included in order to test the consistency of the listeners.
Thus each participant rated a total of 130, 70, and 70 stimuli pairs in
the first, second, and third test, respectively.

Table 1. Speech features used for training the HMM system.
Feature Number of parameters
Fundamental frequency 1
Maximum voiced frequency (Fm) 1
Harmonic-to-noise ratio 5
Mel-generalized cepstrum 30
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Listening tests were performed in sound proof booths with high-
quality headphones. All participants were university students and
native speakers of English, and they were paid for the participation.
24, 21, and 24 listeners participated in the three tests, respectively.
However, after inspection of the results, some participants were re-
moved due to inconsistent results for the null pairs. Thus, results
from 20 listeners in each test were finally used. Note that since all
participants are naive, they are known to use the CMOS scale in a
smaller range than speech experts would for such a study [40].

3.3. Results

In the first test (CCR1), the perceptual effect of the noise spectral
weighting was studied by evaluating the 4 approaches presented in
Table 2. The Dirac pulse was used as the periodic waveform in syn-
thesis to emphasize the perceptual effect of the noise models. Con-
stant time envelope was also used. The results are shown in Figure 4
(uppermost graph). Discrepancies are observed across male and fe-
male speakers. For male, HNR and DynFm are rated the best, but for
the female voice, DynFm is rated better than HNR. FixFm is rated
always worse than HNR and DynFm except for the female speaker.
The system without any noise (Imp) is always rated the worst. The
results indicate that incorporation a noise model in voiced speech has
a profound effect on speech quality, and the modeling of the time-
varying characteristics of the noise spectrum is beneficial, as is done
in DynFm and HNR. Since DynFm was rated better or equal than
the rest of the systems, it is used in the rest of the experiments.

In the second test (CCR2), the effect of noise time envelope was
studied. The 3 systems considered in CCR2 are depicted in Table
2 (middle part) and the corresponding results are displayed in Fig.
4 (middle graph). The results show no statistically significant dif-
ferences between the methods. Thus, the results indicate that the
noise time envelope has no perceptual relevance, and the simplest
one, constant time envelope, is used in the third experiment.

In the third test (CCR3), the effect of periodic waveform was
studied by including the 3 systems in Table 2 (bottom part). The
corresponding results are shown in Figure 4 (bottom graph). The re-
sults diverge across male and female speakers. For male, the natural
residual frame and the eigenresidual are rated best while the impulse
excitation is rated worse than the natural residual. For the female
speaker, impulse excitation and eigenresidual are rated equal while
natural residual is rated worse than the two others. These results
indicate that the perception of the deterministic waveform depends
on the F0 of the speaker. It is well known that phase information
in periodic signals is less important for high-pitched signals than for

Table 2. Systems in the three subjective evaluations (CCR1/2/3).

CCR1 Effect of noise spectral weighting
Imp Impulse excitation without noise
FixFm Impulse excitation + noise according to fixed Fm

DynFm Impulse excitation + noise according to dynamic Fm

HNR Impulse excitation + noise according to HNR

CCR2 Effect of noise time envelope
Con Imp. exc. + dyn. Fm noise + constant time envelope
Tri Imp. exc. + dyn. Fm noise + triangular time envelope
DSM Imp. exc. + dyn. Fm noise + DSM time envelope

CCR3 Effect of deterministic waveform
Imp Impulse excitation + dyn. Fm noise + const. time env.
Nat Natural residual + dyn. Fm noise + const. time env.
Eig Eigenresidual + dyn. Fm noise + const. time env.
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Fig. 4. Results (mean and 95% confidence intervals) of the sub-
jective evaluation comparing noise spectral weighting (uppermost),
noise time envelope (middle), and periodic waveform (bottom).

low-pitched signals (see e.g. [41]). Thus, the natural phase charac-
teristics preserved in the eigenresidual, and even more in the natu-
ral residual, are perceived as more natural in the low-pitched male
speech. For the high-pitched female speaker, excitation phase char-
acteristics have negligible perceptual effect and thus impulse excita-
tion and eigenresidual are rated equal. It however turns out that the
natural frame used for the female speaker exhibited a strong stochas-
tic component, which might explain its degraded quality due to the
repetitive structure of its inherent noisy phase.

4. CONCLUSIONS

This paper addressed the problem of excitation modeling in order
to improve the naturalness in HMM-based speech synthesis. Based
on a generalized vocoder, three main factors influencing the quality
of synthesis were studied: periodic waveform, noise spectral weight-
ing, and noise time envelope. A subjective evaluation was performed
in order to determine the perceptual importance of each factor. Our
results clearly indicate that: i) incorporating a noise model during
the production of voiced sound is crucial; ii) the modeling of the
time-varying characteristics of the noise spectrum is beneficial. This
can be efficiently achieved based on HNR measures or using a dy-
namic maximum voiced frequency; iii) the perceptual impact of the
noise envelope seems to be negligible; iv) it is necessary to adapt the
periodic waveform according the speaker’s F0 range as it will affect
the perception of the excitation phase properties. These conclusions
should be carefully considered when designing new excitation mod-
els. As a result, we believe that future research efforts should focus
on new strategies to weight the energy of both periodic and aperiodic
components in several spectral bands, as well as on a better under-
standing of the phase information in the periodic waveform.
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