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ABSTRACT

Canonical Polyadic Decomposition (CPD), also known as

PARAFAC, is a useful tool for tensor factorization. It has found

application in several domains including signal processing and data

mining. With the deluge of data faced in our societies, large-scale

matrix and tensor factorizations become a crucial issue. Few

works have been devoted to large-scale tensor factorizations. In

this paper, we introduce a fully distributed method to compute the

CPD of a large-scale data tensor across a network of machines with

limited computation resources. The proposed approach is based

on collaboration between the machines in the network across the

three modes of the data tensor. Such a multi-modal collaboration

allows an essentially unique reconstruction of the factor matrices

in an efficient way. We provide an analysis of the computation

and communication cost of the proposed scheme and address the

problem of minimizing communication costs while maximizing the

use of available computation resources.

Index Terms— Tensor decompositions, large-scale data,

distributed computation.

1. INTRODUCTION

From Internet to large research infrastructures, the volume of data

generated by our societies is continuously increasing. A deluge

faced by the producers of these data as well as their users. The

big data issue is a significant scientific challenge that requires

deep investigations in both engineering and fundamental science.

Everyone is concerned and it is urgent to get answers to questions

such as how to store these huge amount of data? How to process and

analyze them?

Low-rank matrix factorization has received a particular attention

in recent years, since it is fundamental to a variety of mining tasks

that are increasingly being applied to massive datasets. In large

applications, matrix factorizations can involve matrices with billions

of entries. At this massive scale, distributed algorithms for matrix

factorization are essential to achieve reasonable performance [2].

However, in many disciplines, data inherently has more than two

axes of variation and can be arranged as tensors (i.e. multi-way

arrays). Computing tensor decompositions of multi-way datasets

is particularly useful to extract hidden patterns and structure in

data analytics problems. Specifically, CPD (Canonical Polyadic

Decomposition) also known as PARAFAC (Parallel factor analysis)

is an extension of a low rank matrix decomposition to tensors.

In order to compute CPD, several algorithms have been

proposed in the literature, which can be classified into three main

categories: alternating algorithms, derivative based algorithms, and
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non-iterative algorithms (see e.g. [3, 4, 5]). Recently, considering

that the data tensor can be serially acquired or the underlying process

can be time-varying, adaptive algorithms have been proposed in

[6]. And more recently, assuming that the data tensor is spatially

spread out, distributed algorithms have been introduced in [7] and

[8]. These algorithms are based on an alternating least square

(ALS) algorithm that proceeds iteratively and minimizes a criterion

(that is usually quadratic) with respect to individual factors one by

one. Then, distributed algorithms are obtained using the concept

of average consensus that has been extensively studied in computer

science and is a central topic for load balancing (with divisible tasks)

in parallel computers [9].

The need for large-scale tensor computations is increasing and

there is a huge gap to be filled. In contrast to large-scale matrix

factorization, very few works are devoted to large-scale tensors. Two

ways have been recently considered in the literature. The first one

consists in exploiting sparseness of tensors. In [10], the GigaTensor

algorithm is designed in order to minimize the number of floating

point operations and to handle the size of intermediate data in

order to overcome the intermediate data explosion problem. For

large-scale tensors the intermediate data explosion problem arises

when Khatri-Rao matrix products are implemented in a naive way.

In [10] a smart ordering of computations is proposed and explicit

computation of Khatri-Rao matrix product is avoided. In addition, a

way to implement the proposed scheme in the distributed computing

frameworks MapReduce and Hadoop is proposed by the authors and

then, from extensive simulations, linear scalability on the number of

machines is claimed. Note that the data explosion problem can also

be handled by exploiting sparseness of both data and latent factors

as in [11, 12, 13].

The second class of methods consists in a subdivision of

the large-scale tensor into smaller ones. Then factor matrices

are reconstituted from the estimated sub-factors. The work

in [14] is motivated by the success of random sampling-based

matrix algorithms. The large-scale tensor is under-sampled several

times, then the different sub-tensors are processed in parallel and

eventually the results are combined in a clever way. In order to

overcome permutation indeterminacies, all the different sub-tensors

are enforced to overlap in a common set of indices in all the three

modes of the tensor. The merging operation is guaranteed to be

successful only if the random samples (sub-tensors) fulfill CPD

identifiability conditions. In [1], sub-division of the original tensor

is achieved in a deterministic way; a grid decomposition is proposed.

CPD is first performed for each sub-tensor in order to get a an

alternative representation that allows avoiding Khatri-Rao matrix

products. Then, grid-CPD performs as a decentralized computation

method where at each step parallel machines have to communicate

with a central server. There is no direct collaboration between the

involved machines. In [15], the authors have introduced the notion
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of collaboration in the grid. In this set-up, the computation is

really distributed. The central server only initiates the process by

sending data to the machines in the network and merges the results

at the end of the computation process. During the computation

process, the central server can allocate its own resources to other

tasks. Moreover, thanks to this full collaboration and by introducing

overlapping between sub-tensors, uniqueness of the decomposition

with indeterminacies as in the standard CPD can be guaranteed.

However, collaboration was restricted to two modes and overlapping

induced loss of efficiency (increase of the dimensions and the

number of sub-tensors).

This paper introduces a new way for computing a grid-CPD

of a large-scale data tensor that ensures essential uniqueness and

perfect reconstruction of the factor matrices. The main idea

of the proposed approach is to allow collaboration between the

machines in the network across the three modes of the tensor.

To cope with the multi-way nature of the data, multi-graphs are

used to model the network. Due to direct collaboration between

machines, fulfilling CPD uniqueness conditions is not required

for each sub-tensor. We provide an analysis of the computation

and communication cost of the proposed scheme and address the

problem of minimizing communication costs while maximizing the

use of available computation resources.

Notations: Vectors are written as boldface lower-case letters

(a,b,· · · ), matrices as boldface upper-case letters (A,B,· · · ), and

tensor as calligraphic letters (X ,Y, · · · ). A
T stands for the

transpose of A whereas A
H stands for its complex conjugate. The

operator ◦ denotes the outer product between vectors, while ⊙ stands

for the Khatri-Rao (columnwise Kronecker) product. The Hadamard

(element-wise) product is denoted by the ∗ symbol. For a three-way

tensor X ∈ C
I×J×K , I , J and K are referred to as the mode-1,

mode-2 and mode-3 dimensions of X , respectively. The operator

⊔1 denotes the mode-1 concatenation of any two tensors X and Y
having the same mode-2 and mode-3 dimensions. This operation is

similarly defined to denote concatenation along the other modes.

2. PROBLEM SETTING

Consider a large-scale tensor X ∈ C
I×J×K , i.e. a tensor with a

total number of entries IJK that can easily be of order of billions.

The CPD of X , denoted by X = [[A,B,C]], is given by [16, 17]:

X =
R
∑

r=1

ar ◦ br ◦ cr, (1)

where A = [a1, . . . ,aR] ∈ C
I×R, B = [b1, . . . ,bR] ∈ C

J×R and

C = [c1, . . . , cR] ∈ C
K×R are the factor matrices associated with

the CPD of X , and R denotes the tensor rank. A sufficient condition

for the essential uniqueness of the CPD was first established by

Kruskal in [18], and states that A, B and C can be uniquely

estimated (up to column permutation and scaling) if kA+kB+kC ≥
2R + 2, where k(·) denotes the Kruskal-rank, or “k-rank”, of its

matrix argument. Shortly, k(A) is equal to r if every set of r columns

of A is linearly independent. In what follows, we work under the

assumption that CPD uniqueness for X holds. Usually, the matrices

A, B, and C can be estimated by computing an approximation to

the rank-R CPD of X , i.e.:

min
A,B,C

∥

∥

∥
X −

R
∑

r=1

ar ◦ br ◦ cr

∥

∥

∥

2

F
. (2)

The traditional way for carrying out such a computation is to resort

to an alternating least squares algorithm (ALS) where estimations

of A, B, and C are obtained by alternatively solving three different

linear least squares (LS) problems. Despite its conceptual simplicity,

ALS involved Khatri-Rao matrix products and multiplications of

matrices that cannot be handled when the tensor exhibits large

dimensions since computation and storage resource can easily

become insufficient. Apart from complexity issues, ALS-based

algorithms present a very slow convergence due to the huge number

of unknowns involved in the estimation of the large factor matrices

A, B and C.

Consider a central server having at its disposal a large-scale

data tensor X to be factorized. This server is connected to a

dense network of L machines (cores or independent computers)

with limited processing powers. Our goal is to perform the CPD

of X across the network by using all the in-network computation

resources in an optimal way while making the central server

available to other tasks. The central server and the L machines,

where computations are achieved, are nodes of a network connected

through reliable high speed data links, so that data exchanges may be

considered noise-free. The central server first subdivides the tensor

and assigns each sub-tensor to a given machine. Once computation

is achieved, the L machines send their results back to the central

server where global factor matrices are built. In contrast to the

grid-CPD in [1], the central server is not involved in the computation

process and available to perform other tasks at the same time. The

proposed set-up is therefore fully distributed while that of [1] is

simply decentralized.

3. PROPOSED SOLUTION

The central server generates different (possibly overlapped) data

sub-tensors X (ℓ1,ℓ2,ℓ3) ∈ C
Iℓ1

×Jℓ2
×Kℓ3 , ℓ1 = 1, . . . , L1, ℓ2 =

1, . . . , L2, ℓ3 = 1, . . . , L3, of much smaller dimensions, by

partitioning X in a dense 3-D tensor grid. The dimensions of

the sub-tensors are related as follows: I1 + . . . + IL1 ≥ I ,

J1+. . .+JL2 ≥ J , K1+. . .+KL3 ≥ K. Equality in a given mode

occurs if and only if the sub-tensors do not overlap in that mode.

The sub-tensors X (ℓ1,ℓ2,ℓ3) can be concatenated along different

pair of modes to form mode-1, mode-2, and mode-3 sub-tensors

X
(ℓ1)
1 ∈ C

Iℓ1
×J×K , X

(ℓ2)
2 ∈ C

I×Jℓ2
×K , X

(ℓ3)
3 ∈ C

I×J×Kℓ3 ,

which are defined, respectively, as

X
(ℓ1)
1 =

[

X
(ℓ1,1)
1 ⊔3 · · · ⊔3 X

(ℓ1,L3)
1

]

(3)

where X
(ℓ1,ℓ3)
1 =

[

X (ℓ1,1,ℓ3) ⊔2 · · · ⊔2 X
(ℓ1,L2,ℓ3)

]

,

X
(ℓ2)
2 =

[

X
(ℓ2,1)
2 ⊔1 · · · ⊔1 X

(ℓ2,L1)
2

]

(4)

where X
(ℓ2,ℓ1)
2 =

[

X (ℓ1,ℓ2,1) ⊔3 · · · ⊔3 X
(ℓ1,ℓ2,L3)

]

,

X
(ℓ3)
3 =

[

X
(ℓ3,1)
3 ⊔2 · · · ⊔2 X

(ℓ3,L2)
3

]

(5)

where X
(ℓ3,ℓ2)
3 =

[

X (1,ℓ2,ℓ3) ⊔1 · · · ⊔1 X
(L1,ℓ2,ℓ3)

]

.

An interesting fact resulting from the CPD trilinearity is as follows:

if the CPD of X is essentially unique and provided that k
A

(ℓ1) =
kA, k

B
(ℓ2) = kB, and k

C
(ℓ3) = kC, each mode-i sub-tensor, i =

1, 2, 3, admits an exact CPD given by:

X
(ℓ1)
1 = [[A(ℓ1),B,C]], X

(ℓ2)
2 = [[A,B(ℓ2),C]]

X
(ℓ3)
3 = [[A,B,C(ℓ3)]]. (6)

Now, the central server assigns a sub-tensor X (ℓ1,ℓ2,ℓ3) to

each of the L available machines. To guarantee a one-to-one
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mapping between the sub-tensors and the machines, each machine

is uniquely labeled by the triad (ℓ1, ℓ2, ℓ3) and is associated with the

corresponding sub-tensor X (ℓ1,ℓ2,ℓ3). Therefore the total number

L of machines is equal to L1L2L3. According to (6), from

their respective sub-tensors, the machines having the same i-th
coordinate, i = 1, 2, 3, can collaborate to estimate their common

sub-factor matrix in mode-i. Therefore the adjacency relations

between the machines evolve according to the mode of interest.

To capture this behavior, we adopt multi-layer graphs, or simply

multi-graphs, for representing the network [19, 20]. For this purpose,

let G be a multi-layer graph which contains 3 individual graph layers

G
(i), i = 1, 2, 3, where each layer G

(i) is a undirected graph

consisting of a common vertex set V , with cardinality L, and a

specific edge set E(i). Each layer is associated with a mode of

the tensor to be decomposed. In addition, each layer is constituted

with Li connected components of L/Li vertices, each connected

component being a star graph1. More precisely, the nodes labeled

(l1, l2, l3) and (l′1, l
′

2, l
′

3) belongs to the same component of G
(i)

if and only if li = l′i. They are adjacent only if one of them is

an internal node and the other is a leaf of a tree. Therefore, each

layer can be viewed as a set of parallel star sub-networks, each star

sub-network constituting a connected component of the graph. As

it is common for tensor decomposition, data processing is to be

carried out in an alternating way. The layers of the multi-graph are

to be considered one after the other. In time, the network topology

switches periodically between parallel star subnetworks (see Fig. 1).

X
(1,1,1)

X
(1,1,L3)

X
(L1,1,L3) X

(L1,L2,L3)

X
(1,L2,L3)

X
(L1,L2,1)

X
(1,L2,1)

X
(L1,1,1)

(l1, 1, 1) (l1, l2, l3) (l1, L2 − 1, l3 − 1)

(l1, L2, L3 − 1)

(l1, L2, L3)

Fig. 1. Left: Subdivision of a large-scale tensor in small

sub-tensors X (l1,l2,l3 each one being associated to a machine

labeled (ℓ1, ℓ2, ℓ3). Right: ℓ1-th star subnetwork of layer 1

associated to the tensor mode 1.

By exploiting the degrees of freedom provided by the three

layers G(i), i = 1, 2, 3, of the multi-graph G, the problem consists in

finding A
(ℓ1), ℓ1 = 1, . . . , L1, B(ℓ2), ℓ2 = 1, . . . , L2, and C

(ℓ3),

ℓ3 = 1, . . . , L3 by solving the three following sets of LS problems:

min
A

(ℓ1)

∥

∥

∥X
(ℓ1)
1 − [[A(ℓ1),B,C]]

∥

∥

∥

2

F
, ℓ1 = 1, . . . , L1, (7)

min
B(ℓ2)

∥

∥

∥
X

(ℓ2)
2 − [[A,B(ℓ2),C]]

∥

∥

∥

2

F
, ℓ2 = 1, . . . , L2, (8)

min
C

(ℓ3)

∥

∥

∥
X

(ℓ3)
3 − [[A,B,C(ℓ3)]]

∥

∥

∥

2

F
, ℓ3 = 1, . . . , L3. (9)

Each set of LS problems is associated with disjoint subsets of

machines and therefore can be solved in parallel. For instance, the

L1 LS problems in mode-1 are solved independently by L1 subsets

of machines working in parallel. The same applies to the two other

1The choice of a star topology is not restrictive. According to the available
resource any other kind of topology can be adopted.

LS problems. Moreover, fast computations can be performed on

small sub-tensors at each machine.
Let us define X

(ℓ1,ℓ2,ℓ3)

(1)
∈ C

Jℓ2
Kℓ3

×Iℓ1 , X
(ℓ1,ℓ2,ℓ3)

(2)
∈

C
Kℓ3

Iℓ1
×Jℓ2 , and X

(ℓ1,ℓ2,ℓ3)
(3) ∈ C

Iℓ1
Jℓ2

×Kℓ3 as the matrices

obtained by unfolding (“matricization” of) the sub-tensors X
(ℓ1)
1 ,

X
(ℓ2)
2 and X

(ℓ3)
3 along mode-1, mode-2 and mode-3, respectively.

Note that these matrices collect different rearrangements of the same

data contained in the sub-tensor X (ℓ1,ℓ2,ℓ3). With these definitions,
we can recast each one of the LS problems (7)-(9) as summations
over smaller LS subproblems, as follows:

J
A

(ℓ1) = min
A

(ℓ1)

L2∑

ℓ2=1

L3∑

ℓ3=1

∥
∥
∥X

(ℓ1,ℓ2,ℓ3)

(1)
− (B(ℓ2)

⊙ C
(ℓ3))A(ℓ1)T

∥
∥
∥
2

F
︸ ︷︷ ︸

J
(ℓ2,ℓ3)

A
(ℓ1)

,

J
B

(ℓ2) = min
B

(ℓ2)

L1∑

ℓ1=1

L3∑

ℓ3=1

∥
∥
∥X

(ℓ1,ℓ2,ℓ3)

(2)
− (C(ℓ3)

⊙ A
(ℓ1))B(ℓ2)T

∥
∥
∥
2

F
︸ ︷︷ ︸

J
(ℓ1,ℓ3)

B
(ℓ2)

,

J
C

(ℓ3) = min
C

(ℓ3)

L1∑

ℓ1=1

L2∑

ℓ2=1

∥
∥
∥X

(ℓ1,ℓ2,ℓ3)

(3)
− (A(ℓ1)

⊙ B
(ℓ2))C(ℓ3)T

∥
∥
∥
2

F
︸ ︷︷ ︸

J
(ℓ1,ℓ2)

C
(ℓ3)

.

The solution that minimizes J
A

(ℓ1) (resp. J
B

(ℓ2) and J
A

(ℓ3) ) can

then be written as:

A
(ℓ1)T =





1

L2L3

∑

ℓ2,ℓ3

Γ
(ℓ2,ℓ3)

A
(ℓ1)





−1 



1

L2L3

∑

ℓ2,ℓ3

Ψ
(ℓ2,ℓ3)

A
(ℓ1)





=
(

Γ
A

(ℓ1)

)

−1
Ψ

A
(ℓ1) (10)

B
(ℓ2)T =





1

L1L3

∑

ℓ1,ℓ3

Γ
(ℓ1,ℓ3)

B(ℓ2)





−1 



1

L1L3

∑

ℓ1,ℓ3

Ψ
(ℓ1,ℓ3)

B(ℓ2)





=
(

Γ
B

(ℓ2)

)

−1
Ψ

B
(ℓ2) (11)

C
(ℓ3)T =





1

L1L2

∑

ℓ1,ℓ2

Γ
(ℓ1,ℓ2)

C
(ℓ3)





−1 



1

L1L2

∑

ℓ1,ℓ2

Ψ
(ℓ1,ℓ2)

C
(ℓ3)





=
(

Γ
C

(ℓ3)

)

−1
Ψ

C
(ℓ3) (12)

where Γ
(ℓ2,ℓ3)

A(ℓ1) = B
(ℓ2)HB

(ℓ2) ∗ C
(ℓ3)HC

(ℓ3) ∈ C
R×R,

Γ
(ℓ1,ℓ3)

B
(ℓ2) = C

(ℓ3)HC
(ℓ3)H ∗ A

(ℓ1)HA
(ℓ1) ∈ C

R×R, Γ
(ℓ1,ℓ2)

C
(ℓ3) =

A
(ℓ1)HA

(ℓ1)H ∗ B
(ℓ2)HB

(ℓ2) ∈ C
R×R, Ψ

(ℓ2,ℓ3)

A
(ℓ1) = (B(ℓ2) ⊙

C
(ℓ3))HX

(ℓ1,ℓ2,ℓ3)
(1) ∈ C

R×Iℓ1 , Ψ
(ℓ1,ℓ3)

B(ℓ2) = (C(ℓ3) ⊙

A
(ℓ1))HX

(ℓ1,ℓ2,ℓ3)
(2) ∈ C

R×Jℓ2 , and Ψ
(ℓ1,ℓ2)

C(ℓ3) = (A(ℓ1) ⊙

B
(ℓ2))HX

(ℓ1,ℓ2,ℓ3)

(3)
∈ C

R×Kℓ3 .

The estimation of {A(1), . . . ,A(L1)}, {B(1), . . . ,B(L2)}, and

{C(1), . . . ,C(L3)} is carried out in three steps. First, the L1

connected components of G
(1) operate in parallel to estimate

A
(1), . . . ,A(L1). Second, the L2 connected components of G

(2)

operate in parallel to estimate B
(1), . . . ,B(L2). Finally, the L3

connected components of G
(3) operate in parallel to estimate

C
(1), . . . ,C(L3). Thanks to the star topology adopted herein, the

averaging operations involved in (10), (11), and (12) can be carried
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out in two steps2. First, the leaves of the star sub-network send their

data to the internal node of the corresponding sub-network and then

the averaged quantities are sent back to the leaves.

Identifiability issues: Strictly local computations of a CPD of

the (ℓ1, ℓ2, ℓ3)-th node requires satisfying the following necessary

condition for the identifiability of the triplet {A(ℓ1),B(ℓ2),C(ℓ3)}
at each node [23]:

min(Jℓ2Kℓ3 , Iℓ1Kℓ3 , Iℓ1Jℓ2) ≥ R. (13)

This condition may not always hold, especially for small sub-tensors

where the dimensions are too small compared to the number R
of hidden factors to be identified from the global data tensor.

By allowing collaboration along the three modes, identifiability

conditions are improved by relaxing the necessary constraints on

the sub-tensor dimensions at each node. In this case, the necessary

condition turns out to be

min
(

∑

ℓ2,ℓ3

Jℓ2Kℓ3 ,
∑

ℓ1,ℓ3

Iℓ1Kℓ3 ,
∑

ℓ1,ℓ2

Iℓ1Jℓ2

)

≥ R, (14)

which is clearly less restrictive than the previous one. Moreover,

thanks to the multi-mode cooperation between the machines in

the proposed scheme, permutation and scaling indeterminacies

are similar to those occurring in the standard CPD. Thus, the

reconstruction of the global factor matrices at the central server can

be done without resorting to additional structural constraints such as

anchor [14] or overlapping [15] sub-tensors.

Communication and computation costs: The overall computation

cost of the proposed scheme is similar to that of the centralized

scheme (standard ALS applied to the large-scale tensor). However,

the cost per machine can be significantly lowered. For instance, for a

large cubic tensor (I = J = K, I > 102) and considering a uniform

sampling of the tensor so that Il = Jl = Kl = mI , with m < 1,

the communication and computation costs are given in Table 1:

Table 1. Complexity evaluation per machine and per iteration for an

I × I × I tensor of rank R.

Method Computation cost Communication cost

Centralized 6RI3 -

Distributed 6mRI3 3R2 + 3mRI

Now let us define by q the ratio between the power required for

achieving one floating operation and that for transmitting one real

value. Assuming that q << I2, the ratio between the per machine

consumptions Ed and Ec in the distributed and the centralized

schemes, respectively, is given by:
Ed

Ec
≈ (1 + q

2I2
)m ≈ m < 1.

This means that the reduction of power consumption per machine

follows the reduction of the tensor dimensions.

From Table 1, we can note that the additional power consumption

is due to communications. Indeed at each ALS iteration, each

machine (ℓ1, ℓ2, ℓ3) has to transmit three R × R matrices (Γ
A

(ℓ1) ,

Γ
B

(ℓ2) , Γ
C

(ℓ3) ) and three rectangular matrices (Ψ
A

(ℓ1) ∈

C
R×Iℓ1 ,Ψ

B
(ℓ2) ∈ C

R×Jℓ2 , Ψ
C

(ℓ3) ∈ C
R×Kℓ3 ). The overall

communication cost per iteration is then given by:

C = 3R2L+R
∑

ℓ1,ℓ2,ℓ3

(Iℓ1 + Jℓ2 +Kℓ3).

2For arbitrary topologies, exact averaged quantities can be obtained using
the finite-time average consensus protocol designed in [21]. In particular,
it has been shown that consensus can be achieved in two steps when the
topology is restricted to be strongly regular [22].

We can conclude that the communication cost grows linearly

with the number of machines, meaning that the proposed scheme

is scalable in terms of communication cost. Moreover, by

appropriately selecting the dimensions of the sub-tensors, one can

significantly reduce the communication cost per node.

Optimizing the sub-tensors’ dimensions: Given a number L of

available machines, one have to minimize the communication cost

per machine so that the necessary identifiability conditions are

fulfilled. The dimensions of the sub-tensors and the parameters Li

are obtained by solving the following integer programming problem:

minimize 1
L1L2L3

∑

ℓ1,ℓ2,ℓ3

(Iℓ1 + Jℓ2 +Kℓ3)

s.t.
∑

ℓ1

Iℓ1 ≥ I,
∑

ℓ2

Jℓ2 ≥ J,
∑

ℓ3

Kℓ3 ≥ K, L1L2L3 ≤ L
∑

ℓ2,ℓ3

Jℓ2Kℓ3 ≥ R,
∑

ℓ1,ℓ3

Iℓ1Kℓ3 ≥ R,
∑

ℓ1,ℓ2

Iℓ1Jℓ2 ≥ R.

This problem is NP-hard. A more tractable solution can be obtained

if we adopt a uniform sampling for each mode, i.e. Iℓ1 = m1I ,

Jℓ2 = m2J , and Kℓ3 = m3K. Table 2 gives the optimal

configuration for a cubic tensor obtained by solving the above

problem relaxed to the case of uniform sampling for each mode.

Table 2. Optimal number and dimensions of sub-tensors for

different numbers of available machines for a 103×103×103 tensor

( Cm= communication cost per machine; R= rate of machines used).

♯ machines Sub-tensor size (L1, L2, L3) Cm R (%)

20 500× 334× 334 (2, 3, 3) 1468 90

40 334× 334× 250 (3, 3, 4) 1218 90

60 334× 250× 200 (3, 4, 5) 1084 100

80 250× 250× 200 (4, 4, 5) 1000 100

100 250× 200× 200 (4, 5, 5) 950 100

Note that as the number of available machines increases a more

efficient use of the resources is obtained and the communication cost

per node is reduced, corroborating the relevance of optimizing the

sampling of the data tensor across the three modes.

4. CONCLUSION

Performing CPD for large-scale tensors is particularly challenging.

In this paper, we have proposed a fully distributed method that

allows computing CPD across a network of machines with limited

computation resources. In the proposed scheme, the central

server does not interfere in the computation process and can

achieve other tasks at the same time. The machines in the

network collaborate with each other according to the three modes

of the tensor. Such a multi-modal collaboration is captured by

a multi-graph whose layers have several connected components.

Due to this full collaboration, improved necessary identifiability

conditions are achieved and the global factor matrices can be

reconstructed in an efficient way. However, a communication

overhead is introduced. Hopefully, the communication cost grows

linearly with the number of machines and the dimensions of the

sub-tensors. Additionally, optimizing the sampling of the tensor

across the three modes yields a significant reduction of this overhead

while maximizing the use of the available computation resources.

Extension to tensors of higher orders is straightforward although the

proposed optimization problem becomes more challenging. Future

works include resources optimization for heterogeneous networks

of machines having different computation capabilities, extension to

other tensor factorization, and exploitation of sparsity and structural

properties of the factor matrices.
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