
VERY FAST UNIT SELECTION USING VITERBI SEARCH WITH
ZERO-CONCATENATION-COST CHAINS

Jiřı́ Kala and Jindřich Matoušek

Dept. of Cybernetics, Faculty of Applied Sciences, University of West Bohemia, Czech Rep.

ABSTRACT
This paper introduces a very fast heuristic search algorithm for unit-
selection speech synthesis. The algorithm modifies commonly used
Viterbi search framework by introducing zero-concatenation-cost
(ZCC) chains of unit candidates that immediately neighbored in a
source speech corpus. ZCC chains are preferred as they represent
perfect speech segment concatenations (so there is no need to com-
pute concatenation costs inside the chains) unless a so-called target
specification is violated. The number of ZCC chains is reduced
based on statistics calculated upon the synthesis of a large num-
ber of utterances. ZCC chains are then combined with single unit
candidates to fill possible gaps in the sequence of candidates. The
proposed method reduces the computational load of a unit selection
system up to hundreds of times. According to listening tests, the
quality of synthetic speech was not deteriorated.

Index Terms— speech synthesis, unit selection, Viterbi algo-
rithm, non-uniform units, zero cost concatenation

1. INTRODUCTION

Unit-selection text-to-speech (TTS) systems are known for their
ability to produce nearly natural-sounding synthetic speech. How-
ever, to achieve such high quality output, these systems utilize
very large speech corpora that aim to cover as many phonetic and
prosodic contexts as possible. As a result, the corpora contain a very
large number of candidates of each speech unit (typically diphones,
context-dependent phones or other phone-like units). In practical
applications, the corpora often include up to tens of hours of speech.
Taking into account the basic principle of unit selection—for each
unit to dynamically select the best unit candidate from the many
which are available—and the high number of candidates of each
speech unit, computational load related to the selection of optimal
unit candidates for a given utterance could be enormous. High com-
putational demand could be crucial, especially in server solutions in
which many parallel requests must be synthesized in real time or in
less powerful devices like smartphones or tablets. Running a unit-
selection TTS system on such devices could be very challenging,
especially when the quality of the synthetic speech output should be
preserved.

To select the optimal sequence of unit candidates, the Viterbi al-
gorithm is often used [1] (see Sec. 2 for a short description). Various
approaches were proposed to speed up the selection process. As it
was shown that the computation of a so-called concatenation cost
(see Sec. 2) is the most computationally demanding part of unit se-
lection [2], the optimizations mostly focused on this particular issue.
Some of them cache computations by synthesizing a large portion of

Support for this work was provided by the Technology Agency TA CR,
project No. TA01030476, and by the University of West Bohemia, project
No. SGS-2013-032.

text offline, and, in run-time, the cached values are used instead of
being computed (see e.g. [2, 3]). Another approach is to reduce the
number of unit candidates by removing some of them offline [4–7],
or during run-time after pre-selecting them using e.g. clustering [8],
statistics about unit candidates occurrences [9], or based on F0 dis-
continuities [10]. Various modifications of the baseline Viterbi al-
gorithm were also proposed e.g. in [11] and further elaborated on
in [12].

Another group of methods prefer to select unit candidates im-
mediately neighboring in source speech corpus utterances. The mo-
tivation is clear—such candidates concatenate perfectly, and, unless
they violate so-called target specification (see Section 2), they can
be preferred during unit selection, resulting in a selection of longer
(non-uniform) units [13–16].

In this paper, a new method for speeding up the unit selection
process is presented. The method takes advantage of the non-
uniform unit scheme mentioned above (here, the sequence of unit
candidates immediately neighboring in a source speech corpus will
be denoted as zero-concatenation-cost chain), but instead of im-
proving the quality of synthetic speech, focus is primarily given to
the reduction of computational demand. Unlike [16] unit chains are
not tied to any linguistic structures like words, syllables or phrases.

2. VITERBI SEARCH – BASELINE ALGORITHM

In the context of unit selection, the Viterbi search (hereinafter
VITBASE) utilizes two cost functions—the target cost Ct

ptk, ukq,
which describes how well or poorly a unit candidate uk meets target
specification tk (i.e. phonetic and prosodic contexts of neighboring
units, various positional aspects in the utterance, etc.), and the con-
catenation cost Cc

puk, uk`1q, which expresses how well or poorly
two potentially joinable unit candidates uk and uk`1 join together
(mainly with respect to spectral continuity). The resulting cost func-
tion CptK1 , uK

1 q then combines both cost functions and expresses
the total (cumulative) cost of a sequence of K candidates

CptK1 , uK
1 q “

K
ÿ

k“1

Ct
ptk, ukq `

K´1
ÿ

k“1

Cc
puk, uk`1q. (1)

The goal of the search is to find an optimal sequence of unit
candidates u˚

K
1 minimizing the total cost function CptK1 , uK

1 q [1,
17]. To do that, the Viterbi algorithm goes through a network of all
units candidates uK

1 assigning each i-th candidate of k-th unit, ukpiq,
(k “ 1, . . . ,K) a best preceding candidate u˚k piq of pk ´ 1q-th unit

u˚k piq “ argmin
j“1,...,Npk´1q

tC˚puk´1pjqq`Cc
puk´1pjq, ukpiqqu (2)

where Npkq is a number of candidates of k-th unit and C˚ is a best

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2588

cumulative cost defined as

C˚pukpiqq “ t
Ct
pukpiqq k “ 1

Ct
pukpiqq ` C˚pu˚k piqq ` Cc

pu˚k piq, ukpiqq k ą 1
(3)

The resulting sequence of selected unit candidates u˚k
1 can then

be found by backtracking the network of all unit candidates starting
at the very last unit uK .

The sequence found by this baseline algorithm is globally opti-
mal with respect to the total (cumulative) cost. On the other hand,
when no modifications of the baseline algorithm are made, it is very
computationally demanding to find u˚

k
1 . For instance, in a system

with more than 650k units candidates (approx. 18 hours of speech)
thousands of candidates per unit can occur. Synthesizing an utter-
ance with the length of 30-50 units will then result in up to tens of
millions of Cc computations.

In our previous work [12], the computational load of VITBASE
was reduced by introducing a flexible pruning scheme in which the
number of unit candidates was reduced based on different tunable
criteria (denoted as VITPRUNED hereinafter). The selection pro-
cess was then approx. nine times faster (for a “conservative” prun-
ing setting), but the finding of globally optimized unit candidates
sequence has not been guaranteed any more.

3. ZERO-COST-CONCATENATION VITERBI
ALGORITHM

3.1. Zero-cost-concatenation chains

By synthesizing randomly selected 10k utterances we observed
that approx. 95% of used unit candidates were part of a zero-cost-
concatenation (ZCC) chain (see Fig. 1). We define a ZCC chain as
a sequence of at least two speech segments (unit candidates) that
immediately neighbored in a source speech corpus.

0.13%
0.16%
0.24%
0.41%
0.65%

1.08%
1.77%

3.06%
5.33%

8.03%
10.42%

14.07%
16.29%

18.32%
15.48%

4.56%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Frequency of ZCC chains

Z
C

C
 c

h
ai

n
 l

en
g

th

Fig. 1. ZCC chains of different lengths and their frequency in syn-
thesized utterances. The white bar represents the frequency of single
speech segment occurrences.

Considering that an important attribute of ZCC chains–Cc is
zero for all unit candidates within a ZCC chain, there is no need
to compute Cc at all. Thus, the cumulative cost of a ZCC chain can
be computed, simplifying the Eq. 4, as a sum of target costs Ct

zccCpt
M
m , uM

m q “

M
ÿ

k“m

Ct
ptk, ukq (4)

where m is a starting position and M an ending position of candi-
dates within a whole synthesized utterance. ZCC Viterbi algorithm
(ZCCVIT) described further in the text then aims to minimize the to-
tal cumulative cost C by preferring to select ZCC chains. As a result,
less Cc computations are required, and subsequently the process of
unit selection is sped up.

ZCC8

ZCC5

ZCC10

ZCC1

ZCC4

ZCC7

ZCC3

ZCC2

ZCC6

ZCC9

B

A

ZCC10ZCC9

 B
E

G
IN

E
N

D

C D

1u 2u 3u 4u 5u 6u 7u 8u 9u Ku

ZCC4

0tC

0tC

ationdifferenti faster C

ZCC21u 2u

Fig. 2. Scheme of ZCCVIT algorithm.

3.2. Algorithm description

The ZCCVIT algorithm is basically similar to VITBASE. The dif-
ference is that the nodes of the network are not single candidates but
all are ZCC chains which can be set up from the candidates. ZCC
chains are sorted according to their starting positions in an utterance,
and then for each ZCC chain, similarly as in VITBASE, a best pre-
ceding ZCC chain minimizing the cumulative cost C˚ is searched
for. Since the strategy is to select ZCC chains as much as possible,
the best preceding ZCC chain is selected only from the closest ZCC
chains. Again, an optimal sequence of candidates is then found by
backtracking the whole network. The scheme of the ZCCVIT algo-
rithm is shown in Fig. 2.

The procedure of searching for the optimal path through the net-
work of K units with each unit uk having Npkq candidates (i.e. the
selection of optimal sequence of candidates ukpiq, k “ 1 . . .K and
i “ 1 . . . Npkq, for a given utterance) using the ZCCVIT algorithm
could be described as follows:

1: For each candidate ukpiq compute the target cost Ct
pukpiqq.

2: Search for all ZCC chains in the network and manage them as
described in Sec. 3.3. Denote the set of resulting ZCC chains as
zccSet.

3: Sort ZCC chains in zccSet according to their starting positions
in the network.

4: Set bestCumCost “ 8 {defines minimum cumulative cost
computed so far through the whole network}.

5: Set bestPath “ NONE {defines the best path found so far}.
6: for zccWork in zccSet do
7: if no ZCC chain precedes zccWork then
8: if distance of zccWork from the beginning of the network

is LIMIT beg at the most then
9: Search for the path from the beginning of the network to

the start of zccWork. Use BeFS search in a reverse or-
der as described in Sec. 3.4 and shown in Fig. 2.B. Store
the resulting path and its cumulative cost, and associate

2589

these with zccWork.
10: else
11: Remove zccWork from zccSet and do not process this

chain any more (see ZCC6 in Fig. 2.A).
12: end if
13: else
14: Find the closest ZCC chain(s) that precede zccWork

(their distance from zccWork is the same and minimal).
Search for paths between these preceding ZCC chains and
zccWork using the BeFS algorithm described in Sec. 3.4
(see Fig. 2.C).

15: The best preceding ZCC chain is the one with the mini-
mum cumulative cost. Store the path to this ZCC chain and
its cumulative cost, and associate these with zccWork.

16: end if
17: if the distance of zccWork from the end of the network is

LIMIT end at the maximum then
18: Search for the path from the end of zccWork to the end

of the network. Use the BeFS search as shown in Fig. 2.D.
19: Backtrack the network from zccWork to the beginning of

the network and together with the path found in Step 18
create the full path fullPath through the whole network.
Set fullCumCost to be the cumulative cost of the created
fullPath.

20: if fullCumCost ă bestCumCost then
21: bestCumCost “ fullCumCost
22: bestPath “ fullPath
23: end if
24: end if
25: end for
26: The optimal path through the network of all candidates (i.e. the

optimal sequence of candidates for the given utterance) is stored
in bestPath.

3.3. ZCC chain management

In order to make the ZCC chain framework more flexible, and to pre-
vent the algorithm from selecting ZCC chains at the expense of any
higher values of target costs Ct (especially at the ends of chains),
a set of ZCC chains were supplemented with all the sub-chains of
all ZCC chains. In this way, the number of points to concatenate
ZCC chains increased, but, on the other hand, the number of ZCC
chains significantly increased too, slowing down the selection pro-
cess. Thus, a way of reducing the number of ZCC chains by iden-
tifying such chains that have no chance to be a part of the optimal
sequence of candidates was searched for. Having analyzed 10k syn-
thetic utterances (of a male voice), we found that 99.98% of ZCC
chains that were a part of optimal sequences had a maximum tar-
get cost maxC

t
ő 0.33 and an average target cost avgC

t
ő 0.30

(see Fig. 3). Based on these findings, the pruning of ZCC chains
according to maxC

t and avgC
t was incorporated into the ZCCVIT

algorithm1.

3.4. Search for candidates between ZCC chains

After ZCC chains were found within a synthesized utterance, any
possible gaps between the ZCC chains had to be identified. A gap
is formed by a sub-network of all single unit candidates from the
original network in an area where ZCC chains are not connected
directly. The first and last nodes of the sub-network are the last can-
didates of the previous ZCC chain and the first candidate of the next

1The exact values of maxCt and avgCt could be different for different
voices. For our female voice we found maxCt “ 0.35 and avgCt “ 0.33.

0

10 000

20 000

30 000

40 000

50 000

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0

0
.2

2

0
.2

4

0
.2

6

0
.2

8

0
.3

0

0
.3

2

0
.3

4

0
.3

6

Z
C

C
 c

h
ai

n
s

co
u
n
t

Count by average target cost Count by max. target cost in chain

Fig. 3. Counts of ZCC chains (that were part of optimal sequences
of candidates) according to average/maximum target costs Ct of the
candidates in the chains.

ZCC chain, respectively. To find the optimal sequence of candidates
within these gaps (and to connect ZCC chains), the VITBASE al-
gorithm would not be a good choice because for any multiple gaps
in a single utterance, the same number of Cc (or even more) had
to be computed (see Fig. 4.A). Instead, the bounded-depth best-first
search (BeFS) algorithm was applied. BeFS is very effective when
there is only one candidate at the beginning of a sub-network (this
is the case at the end of each ZCC chain as shown in Fig. 2.C and
2.D) because any promising candidate sequences can be determined
quickly. The problem of searching for an optimal sequence starting
at the beginning of the network (in which Ct

“ 0 for many can-
didates) and ending with the first candidate of the first ZCC chain
(illustrated in Fig. 4.B) was resolved by reversing the sub-network
as shown in Fig. 2.B. Experiments showed that this reversal lead to
approx. 148ˆ less Cc computations.

ZCCZCC

)1(1iu)1(iu

)(1 Mui)(Nui
cCNM of nscomputatio

ZCC

A B

0tC

0tC

ationdifferenti slow C

1u 2u 3u

Fig. 4. Illustration of a problem of using VITBASE to find single
candidates in gaps between ZCC chains (A) and of a problem of
finding a path with a higher number of starting candidates (B).

Another speed-up was achieved by caching Cc during BeFS in
a similar way as described in [2] or [3].

4. EVALUATION

4.1. Quality measures

To evaluate the proposed ZCCVIT algorithm, two Czech voices
from the ARTIC unit-selection TTS system [18], male and fe-
male, were used. Unit inventories of both voices are of similar
size («18 hours of news-style speech), as the same text prompts
were utilized to record the speech corpus of each voice [19, 20]. To
compare the ZCCVIT algorithm both to the baseline VITBASE and
to the VITPRUNED algorithms, 20 randomly selected news-style
utterances (not included in the source speech corpus; their average
length being 39 units / 7 words) were synthesized using the three
different versions of the Viterbi algorithm and compared to each
other with respect to the following measures.

Speed-up rate S “ 1
n

řn
i“1

baseN
cpiq

Ncpiq
denotes how much the

algorithm in question is faster than VITBASE in terms of the num-

2590

Table 1. Comparison of different versions of the Viterbi algorithm
for the male voice

Algorithm S CD Q

VITBASE 1.00 0.2939 0.00
VITPRUNEDcns 8.35 0.2939 0.00
ZCCVITopt 556.54 0.2851 14.27
VITPRUNEDopt 563.74 0.3889 62.27

ZCCVITfst 4917.20 0.2722 60.88
VITPRUNEDfst 4863.00 0.4035 191.68

ber of computations of concatenation costs Cc (n “ 20, i is the
index of a testing utterance, Nc

piq is the number of Cc computa-
tions in the algorithm in question, and baseN

c
piq is the number of

Cc computations in the reference VITBASE algorithm). We con-
sider such a measure to be sufficient because the concatenation cost
computations cover 89.14% of all synthesis-time computations.

Quality deterioration Q “ 1
n

řn
i“1

Cpiq´baseCpiq

baseCpiq
¨ 1000 rhs

denotes an increase of the cumulative cost Cpiq of the algorithm in
question compared to the globally minimal cumulative cost baseCpiq
of the VITBASE algorithm. The higher is the value of Q, the lower
(mathematical) quality is observed (supposing that the cumulative
cost is a good estimate of the quality of synthesized speech).

Concatenation density CD “ 1
n

řn
i“1

Ndpiq
Napiq

indicates how
much is a synthesized utterance i “fragmented” by comparing the
number of concatenations of the original non-neighboring unit can-
didates Nd

piq to the number of all concatenations Na
piq [7]. The

higher is the value of CD , the more fragmented the utterance is; thus,
the higher is the probability that some artifacts occur at concatena-
tion points deteriorating the quality of speech output. The value of
CD “ 0 means that the synthesized utterance was a part of the
source speech corpus.

Listening tests are a means of subjective evaluation of synthetic
speech. Pairwise preference listening tests were carried out to com-
pare the overall quality of speech synthesized by the different ver-
sions of the Viterbi algorithm. 12 listeners (both TTS experts and
inexperienced listeners) took part in the tests. Each pair of synthetic
utterances A and B were compared on a 3-point scale (A is better
than B, A sounds same as B, A is worse than B).

4.2. Results and discussion

As described in Sec. 3.2, several parameters are used to drive
the ZCCVIT algorithm. The optimal values of the parameters
were found using a grid search with respect to quality deteriora-
tion measure Q. The best value of Q “ 14.27h was achieved
with parameters LIMITbeg

“ 3, LIMITend
“ 3, and the cor-

responding speed-up rate was S “ 556.55. Comparing optimal
sequences of unit candidates selected by ZCCVIT and VITBASE
algorithms, we found that 7 of the 20 testing utterances consisted
of the same candidates and the rest of the utterances differed only
in a few candidates. The results are summarized in Table 1 and
2. VITPRUNEDcns stands for a “conservative” pruning scheme
described in [12] (in our testing set, this algorithm yielded the same
optimal sequence of candidates as VITBASE), ZCCVITopt denotes
the proposed ZCC Viterbi algorithm with the optimal values of pa-
rameters, VITPRUNEDopt represents the algorithm from [12] with a
pruning scheme that leads to a similar speed-up rate as ZCCVITopt,
ZCCVITfst is a very fast version of ZCCVIT with Q similar to
VITPRUNEDopt, and VITPRUNEDfst is a version of VITPRUNED
with a similar speed-up rate as ZCCVITfst.

Table 2. Comparison of different versions of the Viterbi algorithm
for the female voice

Algorithm S CD Q

VITBASE 1.00 0.2936 0.00
VITPRUNEDcns 7.12 0.2936 0.00
ZCCVITopt 438.30 0.2856 18.08
VITPRUNEDopt 449.05 0.3702 71.14

ZCCVITfst 4165.86 0.2667 72.81
VITPRUNEDfst 4135.52 0.4555 459.21

Table 3. Listening test evaluation of different versions of the Viterbi
algorithm for the male voice. A = B stands for “utterance A sounds
same as B”, A ą B means “A sounds better than B”, and A ă B
means “A sounds worse than B”. Preferences are in percents.

Comparison A = B A ą B A ă B
(A) ZCCVITopt vs. (B) VITBASE 87.50 5.42 7.08
(A) ZCCVITopt vs. (B) VITPRUNEDopt 61.90 22.86 15.24
(A) ZCCVITfst vs. (B) VITPRUNEDfst 52.07 31.03 16.90

A listening test based evaluation of the male voice is shown in
Table 3. Evaluation of the female voice was limited to the com-
parison of ZCCVITopt vs. VITPRUNEDopt—24.76% of listeners
preferred ZCCVITopt, 12.62% preferred VITPRUNEDopt, and ac-
cording to 62.62% both versions sounded the same.

As can be seen in Table 1–3, the dramatic reduction of the com-
putation load of ZCCVITopt did not imply a noticeable decrease in
synthetic speech quality when compared to VITBASE. Furthermore,
ZCCVIT appears to be more stable in quality than VITPRUNED
when increasing the speed-up factor S (both in terms of Q and ac-
cording to the listening-test based evaluation). This may be caused
by the fact that, to speed up VITPRUNED, a significant amount
of candidates have to be pruned off, and only a few candidates per
each speech unit remain available for selection. On the other hand,
ZCCVIT still searches through the full network of unit candidates,
or ZCC chains, respectively.

5. CONCLUSION

We presented a modified Viterbi search in which zero-concatenation-
cost (ZCC) chains are utilized to speed up the process of unit se-
lection speech synthesis. To synthesize speech with a proper tar-
get specification, the target cost is used to compromise between the
length of ZCC chains (longer ZCC chains tend to violate the target
specification) and the target specification.

The proposed algorithm reduces the computational load of a
unit selection system up to hundreds of times (speed-up rate was
556.55 for a male voice and 438.30 for a female voice). Although
the main objective was to speed up the unit-selection process, lis-
tening tests did not reveal any noticeable drop in synthetic speech
quality when compared to synthetic speech produced by the baseline
Viterbi search algorithm VITBASE. Unlike the Viterbi search with
the pruning scheme (VITPRUNED proposed in [12]), the algorithm
proposed in this paper is also more stable when very high speed-up
rates (thousands of times faster than VITBASE) are required.

Listening tests revealed that synthetic speech of all versions
(ZCCVIT, VITPRUNED, even VITBASE) in a comparable manner
contained glitches, mainly caused by discontinuities in F0 and du-
ration patterns. Our future work will be directed to an elimination
of the glitches by avoiding to concatenate ZCC chains or single
candidates with different F0 and temporal tendencies.

2591

6. REFERENCES

[1] A. J. Hunt and A. W. Black, “Unit selection in concatenative
speech synhesis system using a large speech database,” in Proc.
ICASSP, Atlanta, USA, 1996, pp. 373–376.

[2] M. Beutnagel, M. Mohri, and M. Riley, “Rapid unit selection
from a large speech corpus for concatenative speech synthesis,”
in Proc. EUROSPEECH, Budapest, Hungary, 1999, pp. 607–
610.

[3] J. Čepko, R. Talafová, and J. Vrabec, “Indexing join costs for
faster unit selection synthesis,” in Proc. Internat. Conf. Sys-
tems, Signals Image Processing (IWSSIP), Bratislava, Slovak
Republic, 2008, pp. 503–506.

[4] W. Hamza and R. Donovan, “Data-driven segment preselec-
tion in the IBM trainable speech synthesis system,” in Proc.
INTERSPEECH, Denver, USA, 2002, pp. 2609–2612.

[5] N. Nishizawa and H. Kawai, “Unit database pruning based on
the cost degradation criterion for concatenative speech synthe-
sis,” in Proc. ICASSP, Las Vegas, USA, 2008, pp. 3969–3972.

[6] P. Tsiakoulis, A. Chalamandaris, S. Karabetsos, and S. Raptis,
“A statistical method for database reduction for embedded unit
selection speech synthesis,” in Proc. ICASSP, Las Vegas, USA,
2008, pp. 4601–4604.

[7] Z. Hanzlı́ček, J. Matoušek, and D. Tihelka, “Experiments
on reducing footprint of unit selection TTS system,” in Text,
Speech and Dialogue, vol. 8082 of Lecture Notes in Computer
Science, pp. 249–256. Berlin, Heidelberg, 2013.

[8] Z. H. Ling, Y. Hu, Z. W. Shuang, and R. H. Wang, “Decision
tree based unit pre-selection in mandarin chinese synthesis,” in
Proc. ISCSLP, Taipei, Taiwan, 2002.

[9] A. Conkie, M. Beutnagel, A. K. Syrdal, and P. Brown, “Pre-
selection of candidate units in a unit selection-based text-to-
speech synthesis system,” in Proc. ICSLP, Beijing, China,
2000, vol. 3, pp. 314–317.

[10] A. Conkie and A. K. Syrdal, “Using F0 to constrain the unit
selection Viterbi network,” in Proc. ICASSP, Prague, Czech
Republic, 2011, pp. 5376–5379.

[11] S. Sakai, T. Kawahara, and S. Nakamura, “Admissible stop-
ping in Viterbi beam search for unit selection in concatenative
speech synthesis,” in Proc. ICASSP, Las Vegas, USA, 2008, p.
46134616.

[12] D. Tihelka, J. Kala, and J. Matoušek, “Enhancements of
Viterbi search for fast unit selection synthesis,” in Proc. IN-
TERSPEECH, Makuhari, Japan, 2010, pp. 174–177.

[13] M. Lee, D. Lopresti, and J. Olive, “A text-to-speech plat-
form for variable length optimal unit searching using percep-
tion based cost functions,” International Journal of Speech
Technology, vol. 6, no. 4, pp. 347–356, 2003.

[14] A. P. Breen and P. Jackson, “Non-uniform unit selection and
the similarity metric within BT’s laureate tts system,” in Proc.
ESCA/COCOSDA Workshop on Speech Synthesis, 1998, pp.
201–206.

[15] M. Chu, H. Peng, H.-Y. Yang, and E. Chang, “Selecting
non-uniform units from a very large corpus for concatenative
speech synthesizer,” in Proc. ICASSP, 2001, vol. 2, pp. 785–
788 vol.2.

[16] J. Xu, D. Huang, Y. Wang, Y. Dong, L. Cai, and H. Wang, “Hi-
erarchical non-uniform unit selection based on prosodic struc-
ture,” in Proc. INTERSPEECH, Antwerp, Belgium, 2007, pp.
2861–2864, ISCA.

[17] A. W. Black, “Perfect synthesis for all of the people all of the
time,” in Proc. IEEE Workshop on Speech Synthesis, Santa
Monica, USA, 2002.

[18] J. Matoušek, D. Tihelka, and J. Romportl, “Current state of
Czech text-to-speech system ARTIC,” in Text, Speech and Di-
alogue, vol. 4188 of Lecture Notes in Computer Science, pp.
439–446. Springer, Berlin, Heidelberg, 2006.

[19] J. Matoušek and J. Romportl, “On building phonetically and
prosodically rich speech corpus for text-to-speech synthesis,”
in Proc. 2nd IASTED Internat. Conf. on Computational Intel-
ligence, San Francisco, USA, 2006, pp. 442–447.

[20] J. Matoušek and J. Romportl, “Recording and annotation
of speech corpus for Czech unit selection speech synthesis,”
in Text, Speech and Dialogue, vol. 4629 of Lecture Notes in
Computer Science, pp. 326–333. Springer, Berlin, Heidelberg,
2007.

2592

