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ABSTRACT

Regarding the non-negativity property of the magnitude spec-
trogram of speech signals, nonnegative matrix factorization
(NMF) has obtained promising performance for speech sepa-
ration by independently learning a dictionary on the speech
signals of each known speaker. However, traditional NM-
F fails to represent the mixture signals accurately because
the dictionaries for speakers are learned in the absence of
mixture signals. In this paper, we propose a new transduc-
tive NMF algorithm (TNMF) to jointly learn a dictionary on
both speech signals of each speaker and the mixture signal-
s to be separated. Since TNMF learns a more descriptive
dictionary by encoding the mixture signals than that learned
by NMF, it significantly boosts the separation performance.
Experiments results on a popular TIMIT dataset show that
the proposed TNMF-based methods outperform traditional
NMF-based methods for separating the monophonic mixtures
of speech signals of known speakers.

Index Terms— Nonnegative matrix factorization, trans-
ductive learning, speech separation

1. INTRODUCTION

Speech separation aims at recovering sounds of known speak-
ers from monophonic mixture signals when some speech sig-
nals of these speakers are provided for training. It has at-
tracted extensive attention and has been widely used in sev-
eral speech analysis tasks such as hearing aids [1], speaker
recognition [2], and telephonic communications [3]. Exist-
ing methods first extract the magnitude spectrograms of both
training speech signals and mixture signals, and then inde-
pendently learn several spectral bases on the training speech
signals of each speaker for separation. The learned spectral
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bases are concatenated to form a dictionary on which the mix-
ture signals are represented, and the sounds of each speaker
are recovered by collecting the components belonging to the
corresponding spectral bases.

Considering the non-negativity property of the magnitude
spectrogram of speech signals, nonnegative matrix factor-
ization (NMF) shows great effectiveness to learn the spectral
bases [4]. Recently, based on the NMF framework[16][6][17],
many approaches [7][8][9] have been proposed for speech
separation. Schmidt et al. [7] proposed nonnegative sparse
coding (NNSC) to pre-compute spectral bases from wind
noise and regard them as a part of the entire dictionary in
decomposing the speech signals interfered by wind noise.
To more accurately model the distribution of noise in speech
signals, Fevotte et al. [10] proposed Itakura-Saito divergence
based NMF (IS-NMF) for speech separation. To consider the
dependencies across successive signals in speech, Smaragdis
[8] proposed a convolutive NMF for speech separation that
learns spectral bases on time-domain speech signals. Al-
though the aforementioned approaches perform well in their
tasks, the spectral bases are learned without considering
the mixture signals to be separated, and thus the dictionary
concatenated by the learned bases inaccurately recovers the
sound of each speaker for the mixture signals.

Transductive learning methods [11] exploit available test
examples to enhance the descriptive power of the learned
model. In this regard, we propose a transductive NMF algo-
rithm (TNMF) for semi-supervised high-performance speech
separation. By contrast to conventional supervised speech
separation, TNMF jointly learns a dictionary on both training
speech signals from different speakers and the mixture sig-
nals to be separated. In particular, TNMF has two objectives:
1) TNMF independently minimizes the distance between the
magnitude spectrogram of the training speech signal and the
product of the corresponding spectral base and activation for
each speaker, and 2) TNMF minimizes the distance between
the magnitude spectrogram of the mixture signals and the
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product of a dictionary concatenated by these spectral bases
and an activation matrix. TNMF combines the two objectives
and utilizes a multiplicative update rule (MUR) to learn both
the dictionary and the corresponding activations. Intuitively,
since the dictionary learned by TNMF contains the phone-
mic features from both training speech signals and mixture
signals, it can more accurately recover the speech of each
speaker, and thus boost the separation performance. Experi-
mental results on the popular TIMIT dataset show that TNMF
outperforms the traditional NMF based methods.

The paper is organized as follows. Section 2 describes
related works on NMF based methods for supervised speech
separation, and Section 3 introduces the proposed TNMF al-
gorithm. We present the experimental results in Section 4 and
conclude the paper in Section 5.

2. RELATED WORKS

NMF [12] decomposes a given nonnegative matrix V ∈
Rm×n

+ into the product of two lower-rank nonnegative matri-
ces W ∈ Rm×r

+ and H ∈ Rr×n
+ by minimizing the following

objective function

min
W≥0,H≥0

∥V −WH∥2F , (1)

where ∥·∥F signifies the Frobenius norm. The squared Frobe-
nius in (1) measures the loss of decomposing V into WH .

2.1. NMF-based Speech Separation

Since the speech signals from different speakers are assumed
to be additive, it is reasonable to use NMF to separate the mix-
ture signals. However, NMF is unsuitable for time-domain
signals because they contain negative entries. We therefore
transform time-domain signals to the frequency-domain by
using the short-time Fourier transform (STFT). Given a se-
quence of time-domain signal v(t), its magnitude spectro-
gram is

V = |Y |, (2)

where Y denotes the frequency-domain signal obtained by
STFT on v(t), and the operator | · | outputs the modulus.

It is obvious that V is nonnegative and NMF can be con-
ducted to decompose the magnitude spectrogram of v(t), i.e.,
V ≈ WH , where the spectral basis W represents phonemic
features including pitch inflections and consonant sounds, and
H signifies the activations [8]. For supervised speech separa-
tion [13], NMF is conducted independently on the magnitude
spectrogram of the training speech signals of each speaker,
and the obtained spectral bases are concatenated to form a
dictionary for separating the mixture signals.

Given p ≥ 2 speakers and their training speech signals, N-
MF is utilized to learn several spectral bases for each speaker.
Let Vk ∈ Rm×nk

+ denote the magnitude spectrogram of the

training speech signals of the k-th speaker, by conducting N-
MF independently on each Vk, we have

Vk ≈WkHk, (3)

where Wk ∈ Rm×r
+ signifies the spectral basis learned for

the k-th speaker. Let vm(t) denote the time-domain mix-
ture signals and Y m denote its frequency-domain signals, and
V m ∈ Rm×n

+ denotes the magnitude spectrogram, a tradition-
al NMF-based method decomposes it by

V m ≈WmHm, (4)

where Wm = [W1, · · · ,Wp] is constructed by concatenating
spectral bases of all speakers and Hm ∈ Rrp×n

+ signifies the
obtained activations.

In the separation stage, by decomposing Hm into Hm =
[Hm

1
T , · · · ,Hm

p
T ]T according to the construction of Wm, it

is easy to verify that

V m ≈
p∑

k=1

V m
k , (5)

where V m
k = WkH

m
k . Eq. (5) means that the mixture sig-

nals are decomposed into p components, each of which corre-
sponds to the magnitude spectrogram of one speaker. Accord-
ing to [14], the frequency-domain signals for the k-th speaker
are recovered by

Y m
k =

V m
k∑p

k=1 V
m
k

◦ Y m, (6)

where the operator ◦ denotes the dot product.
Based on the NMF framework, Joder et al. [15] proposed

to efficiently separate speech from noisy mixture signals with
a hybrid method, i.e., V ≈ [Ws,Wn]H + (⃗1× h) ◦B, where
Ws is estimated a-priori from training speech signals, and B
is a noise estimate computed a-priori. By iteratively updating
H , Wn, and h with multiplicative update rules, such a hy-
brid method successfully removes both stationary and time-
varying noises from V .

3. TRANSDUCTIVE NONNEGATIVE MATRIX
FACTORIZATION

Since the training stage of learning the spectral bases (3) and
the test stage of separating the mixture signals (4) are inde-
pendent, NMF cannot accurately represent the mixture sig-
nals. By contrast, TNMF connects these two stages by si-
multaneously achieving two objectives, i.e., (3) and (4). The
objective function of TNMF is

min
∀1≤k≤p,Wk≥0,Hk≥0,Hm≥0

{
∑p

k=1 ∥Vk −WkHk∥2F

+λ∥V m −WmHm∥2F }, (7)
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where Wm = [W1, · · · ,Wp], and λ is a positive constant that
balances these two objectives.

TNMF jointly learns a dictionary on both training speech
signals Vk from different speakers and the mixture signals
V m to be separated. Since TNMF transduces the mixture sig-
nals to the learned dictionary by incorporating the second ter-
m in (7), it represents the mixture signals more accurately and
overcomes the deficiency of NMF. Experimental results con-
firm that TNMF greatly boosts the separation performance.

Although the objective function of TNMF is jointly non-
convex with respect to all variables {W1, · · · ,Wp, H1, · · · ,
Hp,H

m}, it is convex with respect to each of them separately.
According to [12][5][19], we utilized the majorization mini-
mization (MM) method to derive a multiplicative update rule
(MUR) for solving (7). MUR updates Wk, Hk, and Hm by

Wk ←Wk ◦
VkH

T
k + λV mHm

k
T

WkHkHT
k + λWmHmHm

k
T
, (8)

Hk ← Hk ◦
WT

k Vk

WT
k WkHk

, (9)

and

Hm ← Hm ◦ WmTV m

WmTWmHm
, (10)

respectively, until they do not change the objective value (7).
It is easy to prove that (8), (9), and (10) decrease the objective
function [12]. We omit their proofs here for saving space. We
can easily recover the sounds of each speaker by (6) from the
solution obtained by MUR.

TNMF provides a flexible framework for semi-supervised
high-performance speech separation which learns a phonemic
dictionary from both training speech signals and mixture sig-
nals to be separated. It is suggested to address its extensions
in future work.

4. EXPERIMENTS

In this section, we verify the effectiveness of the proposed
TNMF-based semi-supervised speech separation method on
the TIMIT dataset [18] by comparing with a traditional NMF-
based supervised speech separation method. To evaluate both
methods, we generated the mixture signals by synthetically
summing two different roughly equal length speech segments
from two speakers, i.e., a male (MDAB0) and a female (FAK-
S0). Another two speech segments from them were used for
training. The training speech of each speaker is about 25 sec-
onds, and the mixture speech is about 3 seconds long. All
sounds are sampled at a rate of 16 kHz.

4.1. Evaluation Metrics

According to [8][19], we compared the performance of TNM-
F and NMF in terms of correlation-based measurements, i.e.,
similarity index (SI) and speaker ratio (SR). SI measures

Fig. 1. The speech separation performance of TNMF and N-
MF in terms of SI (a) and SR (b) with the MFR varying from
−5 dB to 5 dB.

how much the recovered sound resembles the desired sound,
and SR measures how much the signals of undesired speak-
ers have been suppressed. Let vmk (t) denote the recovered
time-domain sound and vk(t) denote the ground-truth, SI is
defined as

SIk = 10 log10 corr(v
m
k (t), vk(t)), (11)

where corr(x, y) signifies the correlation between x and y.
The higher SIk, the more similar to the desired sounds of the
k-th speaker. In this experiment, we utilized an inner product
based correlation, i.e., corr(x, y) = ⟨x−x̄,y−ȳ⟩

∥x−x̄∥2∥y−ȳ∥2
, where x̄

is the mean of x, ⟨·, ·⟩ is the inner product, and ∥ · ∥2 is the
l2-norm. Based on this correlation, SR is defined as

SRk = 10 log10
corr(vmk (t), vk(t))∑
i ̸=k corr(v

m
k (t), vi(t))

. (12)

The higher SRk, the better recovery of the k-th speaker.

4.2. Speech Separation

We compared TNMF with NMF in terms of both SI and SR
and mixed the speech segments of both speakers at different
MDAB0-to-FAKS0 ratios (MFR)1 in the range of −5 dB to 5
dB to see how the algorithms work under different condition-
s. Figure 1(a) shows that the SIs of both speakers of TNMF
are higher than those of NMF. It confirms that TNMF bet-
ter recovers the speech segments of both speakers than NMF.
Figure 1(b) shows that the SRs of both speakers of TNMF
are significantly higher than those of NMF. That is because
TNMF transduces the mixture signals to the learned dictio-
nary and clearly recovers the desired sound for each speaker
without interfering of another speaker.

1Similar to the signal-to-noise ratio (SNR) used in [7], we defined
MDAB0-to-FAKS0 ratio (MFR) as quotient of the strength of the sentence
of MDAB0 divided by the strength of the sentence of FAKS0 to simulate the
condition of signal mixtures.
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Fig. 2. The magnitudes of the time-domain signals (top) and frequency-domain signals (bottom) of the original speech (column
a) and recovered speech (column b) of FAKS0, and the original speech (column c) and recovered speech (column d) of MDAB0
by TNMF.

To further illustrate the effectiveness of TNMF, Figure
2 shows the magnitudes of both pure speech and recov-
ered speech by TNMF for both speakers in time-domain
and frequency-domain. Figure 2 shows that TNMF almost
perfectly recovers the desired speech for both speakers.
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Fig. 3. The magnitudes of the time-domain signals (top) and
frequency-domain signals (bottom) of the pure speech (col-
umn a) and recovered speech (column b) of FAKS0, and the
pure speech (column c) and recovered speech (column d) of
MDAB0 by TNMF.

4.3. Parameter Selection

There are three main parameters in the proposed TNMF-
based semi-supervised high-performance speech separation
framework. They are the FFT size, number of spectral bases
r and the trade-off parameter λ. In this experiment, we e-
valuated their influences on the separation performance in
terms of average SI and average SR of the recovered speech
segments for both speakers by TNMF with the FFT size,

r, and λ varying in the ranges of {27+i|i = 0, · · · , 5},
{20× i|i = 1, 2, 4, 6, 10}, and {10i|i = −6, · · · , 1}, respec-
tively.

Figure 3 gives the cross-validation results. The column (a)
shows that it is reasonable to set the FFT size to 1024, and we
kept this setting in the following experiments. The column
(b) shows that the TNMF model is stable when the number
of spectral bases r > 40 and the peak is reached when r =
120. The column (c) shows that the proposed TNMF model
is stable when λ varies in a wide range from 10−6 to 0.1.
Interestingly, the performance is significantly worsened when
λ becomes larger than 0.1. That is because the mixture signals
term in (7) might contaminate the learned spectral bases of
one speaker by the phonemic features of another speaker in
this case. This experiment shows that it is easy to determine
the parameters in the TNMF framework.

5. CONCLUSION

This paper proposed transductive nonnegative matrix fac-
torization (TNMF) for semi-supervised high-performance
speech separation. TNMF surmises that the content infor-
mation of the mixture speech is useful for speech separation,
and thus it jointly decomposes the training speech segments
and mixed speech to transfer the information and obtain more
meaningful dictionaries. We apply TNMF in separating t-
wo known different gender speakers. Experimental results
show that TNMF effectively recovers the original speech and
achieves a higher separation performance than NMF.
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