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ABSTRACT

Convolutional neural networks (CNN) are extensions to deep neu-

ral networks (DNN) which are used as alternate acoustic models

with state-of-the-art performances for speech recognition. In this

paper, CNNs are used as acoustic models for speech activity detec-

tion (SAD) on data collected over noisy radio communication chan-

nels. When these SAD models are tested on audio recorded from

radio channels not seen during training, there is severe performance

degradation. We attribute this degradation to mismatches between

the two dimensional filters learnt in the initial CNN layers and the

novel channel data. Using a small amount of supervised data from

the novel channels, the filters can be adapted to provide significant

improvements in SAD performance. In mismatched acoustic condi-

tions, the adapted models provide significant improvements (about

10-25%) relative to conventional DNN-based SAD systems. These

results illustrate that CNNs have a considerable advantage in fast

adaptation for acoustic modeling in these settings.

Index Terms— Convolutional neural networks, Speech activity

detection, Neural network adaptation

1. INTRODUCTION

Speech activity detection (SAD) is the first step in most speech

processing applications like speech recognition, speech coding and

speaker verification. This module is an important component that

helps subsequent processing blocks to focus their resources on the

speech parts of the signal. In the past, several approaches have been

used to build reliable SAD modules. These techniques are usually

variants of decision rules based on features from the audio signal

like signal energy [1], pitch [2], zero crossing rate [3] or higher

order statistics in the LPC residual domain [4]. Acoustic features

have also been used to train multi-layer perceptrons (MLPs) [5] and

hidden Markov models (HMMs) [6] to differentiate between speech

and non-speech classes. All these approaches focus on attributes

of speech which differentiate it from other acoustic events that can

appear in the signal.

An important step in SAD is to represent speech using features

that capture its unique properties while also being robust to distor-

tions under various noisy conditions. These features can be broadly

categorized as -

(a) Short-term spectral features extracted from power spectral esti-

mates in short analysis windows (10-30 ms) of the speech [7, 8],
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Fig. 1. Convolutional neural network with two pairs of convolution

and max pooling layers used for speech recognition

(b) Long-term modulation frequency components estimated in long

analysis windows spanning few hundreds of milliseconds from

sub-band envelopes of speech [9, 10], and

(c) Joint spectro-temporal features derived using 2D selective fil-

ters tuned to different spectro-temporal modulations of the input

spectrogram [11].

In this paper we focus on SAD using spectro-temporal features

similar to (c) above. These features are however not derived using

2D filters hand-tuned to selected spectro-temporal modulations but

are learnt automatically in a data-driven fashion using a convolu-

tional neural network (CNN) [12] framework (Section 2). The filters

are learnt on audio data from the DARPA RATS program collected

under both controlled and uncontrolled field conditions over highly

degraded, noisy communication channels [13]. Detecting speech in

the presence of non-stationary and non-linear distortions introduced

by these channels is a challenging task. Through a series of DARPA

evaluations, significant improvements have been achieved by differ-

ent sites on this task when channels involved in testing are also seen

during training [14, 15, 16, 17, 18]. The focus of the program is shift-

ing toward a more challenging problem of developing robust systems

that not only perform well on noisy channels seen during training but

also on unseen channels. While this paper is closely related to prior

work in [16], it addresses this new program direction.

To achieve this goal, it is important to develop acoustic models

which are not biased to any particular acoustic condition seen during
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Fig. 2. Selected data-driven filters from the first convolutional layer of a CNN trained on RATS data for SAD

training. When tested on novel channels, since severe degradation in

performances are anticipated, it will also be useful to have models

that can be easily adapted to novel channel conditions with limited

amounts of adaptation data.

Conventional DNNs are trained on fixed feature representations

and have millions of parameters trained with several hundred hours

of data. With very limited adaptation data, it may be infeasible to

adapt this model effectively. CNNs [12] on the other hand, have

data-driven feature extracting layers which can be reconfigured to

new conditions via adaptation, followed by several hidden layers

that can be trained on large amounts of data to discriminate between

speech and non-speech. With this architecture, we hypothesize that

these models can be better adapted and are hence well suited for

this task. The proposed CNN-based SAD processing pipeline is de-

scribed in Section 3. Section 4 describes the experiments we per-

form on several novel channels to test this hypothesis and their re-

sults. These results show that CNNs are useful acoustic models in

novel acoustic conditions with their ability to adapt better with lim-

ited amounts of adaptation data. The paper concludes with a discus-

sion in Section 5.

2. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNN) are very similar to conven-

tional deep neural networks - the difference between these models,

being the additional CNN feature extracting layers. These layers

generate features for succeeding layers instead of pre-processed fea-

tures that are usually input to the DNNs. Each of the feature ex-

tracting layers consists of a pair of convolution and max pooling

sub-parts [12] as shown in Figure 1. The convolution sub-part is

an ensemble of filters that are locally convolved with parts of the

input to produce features that are further processed by a max pool-

ing step. The max pooling operation involves picking the maximum

from adjacent filter outputs. After passing through sigmoid non-

linearities, activations from lower layers are processed by subse-

quent feature extracting layers with more filters and down-sampling.

The extracted features are finally received by fully connected DNN

layers. All the layers of the CNN are trained using the standard

back-propagation algorithm to minimize the cross entropy between

the targets and the activations of the output layer.

In the past, these networks have shown to produce robust rep-

resentations for several image processing tasks [19]. More recently

CNNs have also been applied for speech processing [20, 21]. In

these approaches, CNNs show increased robustness to speaker vari-

ability and improve LVCSR performances by compensating for

shifts in frequency patterns of speech exhibited across speakers.

CNNs also provide significant gains when used on noisy RATS data

as acoustic models for LVCSR based keyword spotting [22]. These

improvements point to the ability of CNNs to learn from degraded

speech as well, and hence to be potentially useful acoustic models

in a task like SAD.

3. SPEECH ACTIVITY DETECTION ON RATS DATA

Convolutional neural networks described in the previous section are

evaluated in terms of SAD accuracy on noisy radio communications

audio provided by the Linguistic Data Consortium (LDC) for the

DARPA RATS program. Most of the RATS data (about 2000 hours)

released for SAD were obtained by retransmitting existing audio col-

lections - such as the DARPA EARS Levantine/English Fisher con-

versational telephone speech (CTS) corpus - over eight radio chan-

nels, labeled A through H [13]. Additionally new telephone record-

ings in Arabic Levantine, Pashto and Urdu were collected specifi-

cally for this program, covering a wide range of radio channel trans-

mission effects [13]. As described earlier, the program is now shift-

ing toward developing robust systems that not only perform well on

noisy channels seen during training but also on unseen channels. We

address this new program direction in two steps.

3.1. Channel Independent Models

To perform well on channels seen during training, our past approach

using CNNs has been to train channel specific models for each of the

RATS channels [16]. This framework however is fragile and breaks

down when tested against novel channels although it performs well

on the seen channels. We address this issue by jointly training a

single channel independent model with data from all the channels.

This allows the new model to learn variabilities across all the RATS

channels without being biased to any particular condition as with the

channel specific framework.

As shown in Figure 1, the CNN is trained on D dimensional log-

mel spectra augmented with ∆ and ∆∆s. The log-mel spectra are
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extracted by first applying mel scale integrators on power spectral

estimates in short analysis windows (25 ms) of the signal followed

by the log transform. Each frame of speech is also appended tem-

porally with a fixed set of T frames. All of the I nodes in the first

feature extracting layer are attached with M1×N1 filters that are two

dimensionally convolved with the input representations. The second

feature extracting layer with J nodes has a similar set of M2 × N2

filters that process the non-linear activations after max pooling from

the preceding layer. The non-linear outputs from the second feature

extracting layer are then passed onto the following DNN layers [22].

Figure 2 shows the response of a few filters from the first layer

of a CNN trained jointly on 4 channels in the modulation domain.

We learn 128 filters on the log-mel stream in order to process the

modulation spectrum at different frequencies. To further understand

the function of these filters we learn a 1 dimensional LDA transform

on the output of these filters to separate speech and non-speech. The

filters are then sorted based on the separability obtained using the

LDA cost function. While some filters show considerable separation

(top filters in Figure 2), a simple linear classifier is not capable of

discriminating between outputs from all the filters (for example the

bottom filters in Figure 2). The outputs of these filters in practice,

pass through several non-linear transformations before they are used

to produce speech/non-speech posteriors.

3.2. Adaptation to Unseen Channels

Once the channel independent networks have been trained, we hy-

pothesize that they will be able to provide reasonable performances

in unseen channels. However, the performance of the system can still

improve by adapting the networks to the unseen channels. Several

techniques have been proposed in the past for adapting neural net-

works in the context of speaker adaptation of both CNN and DNN

hybrid neural models [23, 24, 25, 26]. We propose to adapt the

learnt filters of the feature extracting layers of the CNN with lim-

ited amounts (up to 15 minutes) of supervised data from the novel

channel.

4. EXPERIMENTS AND RESULTS

4.1. Training and Test Data

As described earlier, about 250 hours of automatically annotated au-

dio from multiple languages is available for each of the 8 different

noisy radio channels (A-H). For our experiments we keep channels

A-D as unseen channels and train only on data from channels E-H.

We report results on the official DEV1 test set which has about 5

hours of data for the 4 channels held out as unseen. The equal error

rate (EER), defined as the operating point where the probability of

Miss (PMiss) equals the probability of false accept (PFA), is used

as the performance metric.

4.2. SAD Processing Pipeline

The proposed CNN models generate frame-level posteriors of three

classes - speech (S), non-speech (NS) and non-transmission (NT).

These posteriors are then used along with a HMM Viterbi decoder

with a 5 state HMM topology as described in [16]. To obtain re-

ceiver operating curves, the trade-off between missed speech and

falsely hypothesized speech is determined by adding a fixed offset

to the S scores for every frame. The frame level scores are scaled

by an acoustic weight of 0.03 for all our experiments. After decod-

ing, the boundaries of hypothesized speech are also extended by an

additional 0.1 seconds [14].

Table 1. Performance (EER%) of DNN/CNN systems with channel

D as a seen/unseen channel.

System DNN CNN

Channel Specific Model

(Seen condition - trained on D, tested on D) 1.6 1.4

Channel Independent Model

(Unseen condition - trained on E-H, tested on D) 4.8 6.6

Table 2. Performance (EER%) of CI DNN/CNN systems (trained

on channels E-H) after adaptation with channel D.

System EER (%)

DNN (L4-L5) 2.7

CNN (L4-L5) 3.6

CNN (C1-C2) 2.2

To train the CNN, 40-dimensional log-mel spectra with ∆ and

∆∆s are used. A file-based mean-variance normalization is addi-

tionally applied to this spectra which covers the entire 0-8Khz fre-

quency range. Every node of the first CNN layer uses a separate

9 × 9 filter on each of the 3 input streams. With a temporal con-

text of 11 frames, each node produces a combined 32 (40−9+1) ×
3 (11−9+1) activation from the input. After a max pool operation

along the frequency axis, this is reduced to an 11 × 3 representation.

We use 128 hidden nodes in the first CNN layer. The second CNN

layer with 256 nodes uses filters of size 4 × 3 over the outputs of the

first layer. The outputs from the second CNN layer are passed on to

a DNN with architecture 1024 × 1024 × 1024 × 40 × 3. A single

CNN is trained on data from 4 channels (E-H) as a channel indepen-

dent (CI) network. Additionally, separate channel specific networks

are also trained as baselines for channels A-D.

To compare the proposed CNN systems, we also employ a DNN-

based SAD system. The DNN-based networks are trained on PLP

features. A Gaussian-level LDA is applied on 17 consecutive PLP

frames to project the features to 40 dimensions [16] after file-based

mean-variance normalization. Channel specific and channel inde-

pendent DNNs with architecture 160 × 1024 × 1024 × 1024 × 40

× 3 are trained on these features which are also appended with their

∆, ∆∆s and ∆∆∆s. Both the CNNs and DNNs are discrimina-

tively pre-trained before being fully trained to convergence [22, 16].

4.3. Evaluating on Seen and Unseen Channels

The trained CNN and DNN-based SAD systems are tested on each of

the held-out unseen channels. We first present results on an individ-

ual channel - channel D. Table 1 shows the performance when chan-

nel D is tested against a channel specific model trained on channel D

and against a channel independent system to which channel D is un-

seen. We observe that at the channel specific level, CNNs trained on

log-mel features are able to outperform DNN systems trained on PLP

features. However, in the unseen case the CNN performs worse than

the DNN system. We hypothesize this to be from mismatches in the

feature transforms, especially those in the feature extracting layers

of the CNN, since there are significant differences between channel

D and channels E-H. Channel D has frequency shift distortions not

present in the channels seen during training [13].

4.4. Adaptation to Unseen Channels

To further understand the behavior of the CI networks, we adapt both

the CNN and DNN with 15 minutes of supervised data. With this
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Fig. 3. Performance of DNN and CNN-based SAD systems on various RATS channels

limited amount of data, we adapt the weights and biases of only the

last two layers (L4-L5) - 1024 × 40 and 40 × 3. Table 2 shows

the results of this adaptation. There is a very significant improve-

ment as the EER improves by nearly half. In a second experiment

we adapt only the first two layers of the CNN (C1-C2) keeping the

remaining parameters fixed. This adaptation provides further im-

provements confirming our hypothesis of more mismatches in the

feature extracting layers of the CNN. No additional gains were ob-

served by a similar adaptation of the front layers of the DNNs. The

gains also remained same when both the front layers (C1-C2) and

the back layers (L4-L5) of the CNN were both adapted. The per-

formance improves further by an absolute 0.2% when the amount of

adaptation data was increased to about 1 hour for both the models. In

our remaining experiments on the other held out channels we adapt

only the initial layers for the CNN and the last layers for the DNN

with 15 minutes of data.

Figure 3 shows the results of these experiments on all the re-

maining held-out channels. On all the 4 channels we tested, we ob-

serve consistent patterns in performance -

(a) The CNNs perform better or similar to the DNNs on matched

channel specific train and test conditions.

(b) In mismatched conditions both the CNNs and DNNs have a

degradation in performance. However, the performance drops

further for the CNNs depending on the degree of mismatch. In

channels A and B for example, the performance differences be-

tween the CNNs and DNNs are not as significant as in channels

C and D. We attribute these losses primarily to the CNN’s data-

driven feature extraction layers.

(c) Both the CNNs and DNNs respond well to minimal amounts of

adaptation data. For the CNN architecture however, adaptation

of the feature extracting layers has more impact than adapting

the layers closer to the final output layer. There is a very signifi-

cant relative improvement of up to 60% with just 15 minutes of

adaptation data. This observation also points to the sensitivity

of the CNN’s data-driven feature extraction layers.

(d) The adapted CNN models perform better (about 10-25% rela-

tive) to DNN-based SAD systems.

5. CONCLUSIONS

We have explored the behavior of convolutional neural networks for

speech activity detection on noisy data from the RATS program in

the context of novel unseen channels. Our experiments show that

channel independent networks can be used in this context but need

to be improved via adaptation before they perform as well as channel

specific networks. We have also demonstrated that CNNs are useful

acoustic models in novel channel scenarios and can adapt well with

limited amounts of adaptation data. We have currently restricted

our adaptation experiments to limited amounts of supervised data.

The data for adaptation can however be obtained via unsupervised

or semi-supervised techniques. It will be useful to explore the per-

formance of the CNN systems in self-training and co-training frame-

works as well.
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