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ABSTRACT
Despite recent advances in the use of Artificial Neural

Network (ANN) architectures for automatic speech recogni-
tion (ASR), relatively little attention has been given to using
feature inputs beyond MFCCs in such systems. In this pa-
per, we propose an alternative to conventional MFCC or fil-
terbank features, using an approach based on the Generalised
Hough Transform (GHT). The GHT is a common approach
used in the field of image processing for the task of object
detection, where the idea is to learn the spatial distribution
of a codebook of feature information relative to the location
of the target class. During recognition, a simple weighted
summation of the codebook activations is commonly used to
detect the presence of the target classes. Here we propose to
learn the weighting discriminatively in an ANN, where the
aim is to optimise the static phone classification error at the
output of the network. As such an ANN is common to hy-
brid ASR architectures, the output activations from the GHT
can be considered as a novel feature for ASR. Experimental
results on the TIMIT phoneme recognition task demonstrate
the state-of-the-art performance of the approach.

Index Terms— Phoneme recognition, TIMIT, object de-
tection, Hough Transform

1. INTRODUCTION

Hybrid ASR architectures have achieved many state-of-the-
art results in recent years, in particular those using deep neu-
ral networks (DNNs) [1, 2, 3]. However, the features have
remained unchanged from the simple MFCC or filterbank fea-
tures that have been ubiquitous for decades. Despite their
strong performance, training DNNs with such features has
also proved computationally expensive and the information
extracted at each layer of the network is difficult to interpret.

In this paper, we propose a novel ASR approach that is
inspired by our previous work on using the GHT for sound
event recognition [4]. The GHT is common in image process-
ing, where it is among the state-of-the-art for object detection
[5, 6]. Our idea is to combine the flexibility of the GHT for
modelling the spatial distribution of feature information, with

the modern hybrid-ANN architecture used in state-of-the-art
ASR systems. This is achieved by placing the GHT in a dis-
criminative framework, whereby an ANN learns the weighted
mapping between the input codebook cluster activations and
the target phoneme states to directly optimise the static phone-
state classification performance. This has parallels with the
“Max-Margin” Hough Transform presented in [6], where a
formulation similar to that found in SVM was used to learn
the discriminative weighting. The advantage of our approach
is twofold. Firstly, the discriminative weights are learned in
a framework that can be used directly in modern hybrid ASR
systems. Secondly, the front-end processing of our approach
enables a wide range of feature representations to be extracted
from the speech data, such as formant-based features.

The remainder of this work is organised as follows. Sec-
tion 2 introduces the GHT as a framework for hybrid ASR.
Section 3 details the experimental evaluation on the TIMIT
speech database. Section 4 then concludes the work.

2. GENERALISED HOUGH TRANSFORM
FRAMEWORK

2.1. Introduction to the Hough Transform

The Hough transform (HT) was originally designed to de-
tect parametrised lines and curves [7], and was only expanded
later to cover arbitrary shapes through the GHT [8]. To under-
stand the detection mechanism, consider the simple example
shown in Fig. 1a, which contains two lines against a noisy
background. Here, each point at location li = [xi, yi] is con-
sidered as a feature, and casts votes for possible lines into the
Hough accumulator in Fig. 1b. As limited feature information
is available, the voting function is simply the distribution of
all possible straight lines that the point could belong to, cov-
ering all possible rotations: −90 < θ < 90. Using the polar
equation of a straight line, the Hough accumulator, H(r, θ),
is therefore the summation of the evidence as follows:

H(r, θ) =
∑
li

{
1, ∀r = xi cos θ + yi sin θ

0, otherwise,
(1)
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(a) Image containing two lines and noise.
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(b) Hough accumulator showing the presence
of the two lines detected in the image in (a).

Feature-Codebook 
Matches

GHT voting accumulates 
evidence for detection

(c) Extension to the Generalised Hough Transform
with voting based on feature-codebook matching.

Fig. 1. Simple example of the Hough transform for overlapping straight lines in noise. The result is two strong local maxima in
the Hough accumulator indicating the hypotheses for the two lines.

where r is the perpendicular distance from the origin and θ the
angle from the horizontal axis. Local maxima in the Hough
accumulator in Fig. 1b correspond to the combined evidence
from the individual points in the image for a line with a given
(r, θ). The Hough transform has two desirable properties.
Firstly, the voting procedure is a summation, as opposed to
multiplication, hence missing points on the line do not ad-
versely affect the result. Secondly, the Hough accumulator
space is sparse and separable, such that a strong peak occurs
for each line representing evidence for the detection.

2.2. Generalised Hough Transform

The extension of the Hough transform to the GHT is shown
in Fig. 1c, which allows the detection of arbitrary shapes that
cannot be represented by an analytical equation. Features are
first matched against a codebook that is learnt during training.
This codebook stores both the feature template and a spatial
voting function, which models the distribution of the code-
book entry in the training, relative to the occurrences of each
target class to be detected. During recognition, the match-
ing codebook entries for each feature casts votes for possible
locations of the target into the Hough accumulator for each
target class. As before, this voting is a weighted summation
of evidence, and peaks in the accumulator correspond to de-
tections for the target class. This therefore maintains the key
principles of the Hough transform, such as independent fea-
ture voting and a sparse and separable accumulator space.

In previous works on the implicit shape model [5, 6], the
GHT is cast into a probabilistic framework. Following the no-
tation used in [6], let fj denote a feature observed at location
lj , where l represents the time-index of the feature in the case
of frame-based audio processing. In addition, let S(On, x)
denote the score of target class On at time location x, and
let Ci denote the ith codebook entry representing the feature
space. While there can be considerable flexibility in defining
the codebook and features, for simplicity and understanding

in the context of speech recognition, it can be assumed that
the features fj are MFCCs, and the codebook C consists of
GMM models trained to represent the state-level feature ob-
servations in an HMM.

The first step is to match the feature fj against the code-
book Ci. Only a subset of the codebook entries will be
matched, each with probability p(Ci|fj , lj). Next, every
matching codebook entry casts votes for possible locations x
of the associated target classes On using their learned spatial
distributions p(On, x|Ci, l). The overall Hough accumulator
score S(On, x) is then obtained by adding up the individual
probabilities over all the feature observations:

S(On, x) =
∑
i,j

p(On, x|Ci, lj)p(Ci|fj , lj) (2)

This can be simplified using the fact that the matching of the
codebook entries is independent of their location, and can be
further expanded to give the following:

S(On, x) =
∑
i,j

p(x|On, Ci, lj)p(On|Ci, lj)p(Ci|fj) (3)

The first term is the probabilistic Hough vote for a tar-
get class position given its label and the feature interpreta-
tion. In our experiments, we maintain a binned estimate of
p(x|On, Ci, lj) within a temporal context window relative to
the target class location. The second term specifies a con-
fidence that the codebook entry Ci at location lj is really
matched on the target class. Finally, the last term is the likeli-
hood that the codebook entry Ci generated the feature fj . As
suggested in [5], we base this on a Gibbs-like distribution of
the distance of the codebook entry to the feature as follows:

p(Ci|f) =

{
1
Z exp(−γd(Ci, f)), if d(Ci, f) ≥ t
0, otherwise

(4)

where Z is a normalising constant to make p(Ci|f) a prob-
ability distribution, d(Ci, f) is the negative log-likelihood of
the codebook match, and γ, t are positive constants.
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2.3. Discriminative Weighting

In equation (3), the second term p(On|Ci, lj) is a weighting
that captures how confident we are that the codebook entry
Ci at location lj matches the class On as opposed to the rest.
Assuming that p(On|Ci, lj) is independent of the lj , then a
simple method for estimating the weights is based on the rel-
ative frequency of the codebook entry across the different tar-
get classes as follows [6]:

p(On|Ci, l) = p(On|Ci) ∝
p(Ci|On)

p(Ci)
(5)

where p(Ci|On) is the relative frequency of codebook entry
Ci in target class On, while P (Ci) is the relative frequency
across all of the training data.

An improved method would be to learn this weighting
in a discriminative framework to optimise the classification
performance across all of the target classes. This was the
approach taken in the max-margin framework of [6], where
it was shown that equation (3) can be rewritten by factoring
p(On|Ci) as a separate summation as follows:

S(On, x) =
∑
i

p(On|Ci)
∑
j

p(x|On, Ci, lj)p(Ci|fj)

=
∑
i

wi,n × ai,n(x) = wTAn(x)
(6)

where AT
n = [a1,n, a2,n, ai,n, . . . aK,n] is the activation vec-

tor across the i = 1, 2, . . .K codebook entries, and ai,n is
given by the following equation:

ai,n(x) =
∑
j

p(x|On, Ci, lj)p(Ci|fj) (7)

Unlike the max-margin approach in [6], here we propose to
use an ANN to learn the discriminative weighting wi,n. The
input layer of the network is the activation vector An, while
the output is the target classes On, which in our case will be
the phone-state identities found in the training data.

2.4. Summary of the HT-ANN Processing Architecture

A summary of the overall processing architecture is shown in
Fig. 2, where we refer to the overall system as HT-ANN. Here
it can be seen that the required steps are to first learn both a
codebook of feature information, and the voting distribution
relative to the observations of the target classes in the train-
ing data. Note that we use a single target location for each
phone-state occurrence as the reference point for the distri-
bution information, with the reference point placed above the
central frame of the state duration. The GHT is then used to
compute the activations An(x) at every time frame location
x, by adding up the votes according to the equation (7) for
each matching cluster Ci for the feature fj found at location
lj . This activation vector forms the input to the ANN, which

Feature 
Matcher

Hough 
Transform

Features
(e.g. MFCC)

ANNState-level 
posteriors

Codebook (C) Votes
P(O,X|C,L)

Activations 
A(x)

Fig. 2. Overview of the processing pipeline for the proposed
HT-ANN hybrid architecture.

performs discriminative training to optimise the classification
performance on the training set.

It can be seen that the activation vector can be consid-
ered as a novel feature for hybrid ASR, since the output of the
ANN are conventional state-level phone posteriors, which be
used in the subsequent processing. It is also important to note
that the emphasis of this hybrid architecture is less focussed
on the learning ability of the ANN, which has previously been
the goal of DNN hybrid systems [9, 10]. This is because the
GHT forms a first layer of classification, and the task of the
ANN is simply to learn the optimal mapping of the activation
vectors to the output labels, which should largely consist of
separating the most easily confused classes. This is opposed
to DNNs, which are given the more challenging task of per-
forming a multilayer abstraction of the MFCC features, which
is necessary to achieve the output classification.

3. EXPERIMENTAL EVALUATION

3.1. Experimental Setup

Phone recognition experiments are performed on the TIMIT
corpus. The standard training set consisting of 462 speakers
is used for training with all SA sentences removed. The stan-
dard development set of 50 speakers is used for model tuning.
Results are reported using the standard 24-speaker core test
set consisting of 192 sentences with 7,333 phone tokens. The
speech is represented using the 1st-12th-order MFCCs and
energy, along with their first and second temporal derivatives,
normalised to have zero mean and unit variance, extracted us-
ing HTK [11].

We choose frame-level phone-state classification error
rate as the main evaluation criterion as this is commonly used
in previous works [9, 10, 12, 13]. We also show frame-level
phone classification error rates, when the errors in the state
within the same phone are not counted, for both the full 61
phone classes and the folded set of 39 phone classes.
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Method Hidden Layers /
Hidden Units

Frame-level
State Err (%)
(183 classes)

SVM ([12]) - 60.3
OMP ([12]) - 48.9
DCN ([13]) 6 / 7000 44.04
DSN ([9]) 8 / 6000 43.86

K-DCNRF ([10]) 4 / 44000 42.87
HT-ANN (proposed) 1 / 3000 39.98

Table 1. Frame-level classification error rates of the 183
phoneme states on the TIMIT core test set.

3.2. System Architecture

The HT-ANN framework described in Section 2 is imple-
mented in Matlab for this preliminary evaluation. This sys-
tem is first bootstrapped by performing conventional GMM-
HMM training in HTK [11] using a 3-state monophone model
with 10 mixtures per state. This is used to generate the state
labels for the ANN target classes, which are obtained by
HMM forced alignment. This gives us a total of 183 state
classes, 3 for each of the 61 phone labels defined in the
TIMIT training set.

The codebook for the GHT is also directly taken from
the GMM-HMM model, using the 183 GMMs learnt for the
phone states. The input activation vector for the ANN is there-
fore a sparse vector of dimension 183 × 183 = 33489, since
there are 183 entries in the codebook and 183 target classes.
To overcome the memory limitation problem, we first perform
PCA on a small sample of training data to reduce the number
of dimensions down to 1500. A mini-batch size of 256 is used
to train the ANN, which has a single hidden layer with a sig-
moid non-linearity, to simplify the training and to overcome
the difficulty of training DNNs. For the spatial distribution of
the features used in the GHT, the temporal extent is limited to
a context window of 21 frames, such that the temporal infor-
mation is relevant to the target state without spreading too far
into the neighbouring phones.

Hidden
Units

Frame-level
Test Phone

Err %
(39 classes)

Frame-level
Test Phone

Err %
(61 classes)

Frame-level
Test State

Err %
(183 classes)

1000 26.79 32.54 41.39
2000 26.05 31.77 40.29
3000 25.99 31.59 39.98

Table 2. Frame-level classification error rates of phones (61
or folded 39 classes), and of phone states (183 classes) as a
function of hidden layer size.

3.3. Results and Discussion

The frame-level state classification error results are shown
in Table 1 and compared with recent techniques using both
DNNs [13, 9, 10] and other techniques [12]. It can be seen
that the proposed HT-ANN approach achieves a state-of-the-
art performance, with the lowest overall classification error.
This is despite the simplicity of the neural network used in
comparison with the previous experiments on DNNs, that
have many times the number of parameters. We also fold
the 61 classes in the original TIMIT label set into the stan-
dard 39 classes. The corresponding results are presented in
Table 2. Note that the results are obtained without the use
of phone-bound state alignment and without any phone-level
“language” model.

A further experiment is carried out where we expand the
front-end feature representation by extracting formant-based
features using the Mustafa-Bruce formant tracker approach
presented in [14]. An additional 50 codebook clusters are
added to separately model the formant information, and only
voiced frames are allowed to cast votes during testing, with
the remaining frames treated as missing. The results demon-
strated an improvement in phone-state test error to 39.66%,
which gave a 31.27% and 25.89% test phone error for 61 and
39 classes respectively. This highlights the flexibility of the
HT-ANN framework, and further demonstrates the state-of-
the-art performance that can be achieved.

4. CONCLUSION

This paper described the novel HT-ANN approach for hybrid
speech recognition, which uses the GHT to generate code-
book activation vectors that can replace MFCCs at the input
layer of the ANN. The idea is that the GHT learns the distri-
bution of the observed codebook-feature matches, relative to
target class occurrences in the training data, and uses it as a
voting function to accumulate evidence. Instead of applying a
simple weighted summation of the codebook activations, the
HT-ANN approach learns a discriminative weighting that op-
timises the classification accuracy. Therefore, the codebook
activation vector can be considered as a novel feature for hy-
brid ASR, but has the advantage that the ANN only has to
learn a simple weighting to optimise the GHT classification
score, as opposed to traditional hybrid architectures, where
a DNN is required to obtain different feature abstractions at
each layer.

Future work will include a full exploration of the rich flex-
ibility provided by the GHT to model different feature repre-
sentations. This can include the use of local features, which
are common in object detection, that may be able to capture
robust information that can perform well in challenging con-
ditions, such as noisy or distant speech. We will also evaluate
the system using a dynamic programming-based decoder, to
evaluate continuous phonetic or speech recognition tasks.
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