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ABSTRACT

Previous work has shown that acoustic features can be im-
proved by unsupervised learning of transformations based on
canonical correlation analysis (CCA) using articulatory mea-
surements that are available at training time. In this paper,
we investigate whether this second view (articulatory data)
still helps even when labels are also available at training time.
We begin with strong baseline bottleneck features, which can
be learned when the training set is phonetically labeled. We
then compare several options for learning transformations of
the bottleneck features in the presence of both articulatory
measurements and phonetic labels for the training data. The
methods compared include combinations of LDA and CCA,
as well as a three-view extension of CCA that simultaneously
uses the labels and articulatory measurements as additional
views. Phonetic recognition experiments on data from the
University of Wisconsin X-ray microbeam database show that
the learned features improve performance over using either
just the labels or just the articulatory measurements for learn-
ing acoustic transformations.

Index Terms— multi-view learning, canonical correla-
tion analysis, articulatory measurements, bottleneck features,
supervised transformation learning

1. INTRODUCTION

One of the main recent improvements to automatic speech
recognition has come from improving the acoustic features
by learning transformations of basic features. A typical ap-
proach is to construct high-dimensional features, by concate-
nating multiple consecutive frames of basic features (e.g.,
mel-frequency cepstral coefficients, perceptual linear predic-
tion coefficients) around the current frame, and then to reduce
dimensionality using a transformation that is learned from
data. Such learned transformations can include:

• Unsupervised linear transformations, such as principal
components analysis (PCA)
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• Unsupervised nonlinear transformations, such as
graph-based methods [1]

• Supervised linear transformations, such as linear dis-
criminant analysis (LDA) and its extensions [2, 3]

• Supervised nonlinear transformations, typically using
neural networks with phonetic (or state) labels as out-
puts, such as tandem [4] and bottleneck [5] processing

A research question that has recently been pursued is
whether it is possible to learn better transformations if we
have access to another view of the speech data at training time,
in particular articulatory measurements. Articulatory mea-
surements clearly help if they are available at test time [6, 7],
and may also help in the more realistic scenario where they
are only available at training time and not test time [8]. We
have found that such an additional view can indeed help learn
improved acoustic feature transformations, using a multi-
view learning approach based on canonical correlation analy-
sis (CCA) [9, 10, 11]. Encouragingly, the improvements seem
to hold for speakers for whom no articulatory measurements
are available even at training time [11].

Our previous work on CCA-based acoustic feature trans-
formation learning has been in the unsupervised setting.
There are certain virtues to this setting, but frame labels are
often available, or relatively high-quality ones can be ob-
tained via forced transcription. In such cases much better
acoustic features can be obtained, in particular ones based
on neural networks as in the tandem [4] and bottleneck [5]
approaches. In this paper, we ask whether in this supervised
setting, we can start from strong supervised features (in our
case bottleneck features) and still obtain an improved feature
transformation using the additional information from articu-
latory measurements and labels at training time.

We consider several ways of combining a second view
with labels, using either combinations of CCA and LDA or
three-view extensions of CCA that consider the labels to be
a third view. Fig. 1 gives a pictorial overview of the ap-
proach. We present phonetic recognition experiments on data
from the University of Wisconsin X-ray microbeam database
(XRMB) [12], comparing the techniques and showing that in-
deed the new transformations improve over both unsupervised
CCA or supervised transformations alone.
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Fig. 1. Pictorial overview of our approach and notation.

2. METHODS

In this section we review unsupervised multi-view feature
transformation learning via CCA, as well as supervised
single-view transformation learning via LDA, and then
describe several ways of using both labels and multiple
views. Here we only consider linear transformations,
although the techniques have nonlinear extensions. Our
training data are N samples of random vectors of acoustic
features, X ∈ Rdx×N , articulatory measurement features
Y ∈ Rdy×N , and labels Z ∈ Z , where the definition of
Z depends on how the labels will be used (see below).
The training set is then {xi, yi, zi}Ni=1, where each tuple
(xi, yi, zi) represents features computed over one frame of
simultaneously recorded acoustics (xi) and articulation (yi)
and the corresponding phone label (zi). To simplify notation
we assume that the data have been mean-centered. Our goal
is to find a transformation matrix L ∈ Rdx×m,m ≤ dx, such
that the transformed acoustic features L>X improve recogni-
tion performance. Fig. 1 shows our overall setup and notation.

Unsupervised multi-view learning via CCA: In previous
work in the unsupervised setting (i.e., given only samples of
raw features X and Y ), we have taken an approach based on
canonical correlation analysis (CCA) [10] and its nonlinear
extensions [11, 13]. We review this approach for complete-
ness. CCA is a technique for learning maximally correlated
linear projections of data in two views [14, 15]. We give the
formulation of Golub and Zha [16] (instead of the common
statistical formulation [14]) as it clarifies connections with
other methods: Given the pair of data matrices X ∈ Rdx×N

and Y ∈ Rdy×N , the CCA projection vectors are columns of
the matrices Û ∈ Rdx×m and V̂ ∈ Rdy×m that solve:

minimize
U,V

∥∥U>X − V >Y ∥∥2
F

subject to
1

N
U>XX>U = I,

1

N
V >XX>V = I

1

N
U>XY >V = I

, (1)

where ‖·‖F denotes the Frobenius norm. This problem is
equivalent to finding maximally correlated pairs of projec-
tions, subject to uncorrelatedness of subsequent projections.

We will use the following shorthand for Problem (1):{
Û , V̂

}
= arg max

U,V
ρ(U>X,V >Y ). (2)

where ρ represents correlation (in this case it should be
thought of as multidimensional correlation as above). The
solution of Eq. (1) is straightforward [15]: The matrix Û
consists of the top m eigenvectors of Ĉ−1xx ĈxyĈ

−1
yy Ĉyx,

where Ĉxx = 1
NXX

>, Ĉyy = 1
N Y Y

> are the sample auto-
covariance matrices and Ĉxy = 1

NXY
> is the sample cross-

covariance matrix. The matrix V̂ is composed of columns
vk ∝ Ĉ−1yy Ĉyxuk; in our case, we discard V̂ since we only
have access to the acoustic view at test time. In practice, in or-
der to avoid ill-conditioned auto-covariance matrices and mit-
igate the effects of noise in the data, we regularize by adding a
term rxI to the auto-covariance estimate Ĉxx and ryI to Ĉyy.

The largest possible number of learned projections is
min(dx, dy); in order to reduce dimensionality, we retain only
the top m < min(dx, dy) projection vectors, and these form
the desired final transformation matrix L = Û = [u1 . . . um].
Nonlinear extensions of CCA can be derived by replacing the
linear projections with nonlinear functions f(X), g(Y ) de-
fined via kernels [17, 15] or neural networks [18, 13].

A common motivation for the use of CCA is that if the
two views are largely uncorrelated conditioned on some class
of interest (here, the phonetic class), then the dimensions that
are correlated should be discriminative. In our case, a second
motivation is that we know the second view (articulation) to
be useful if available at test time, but this is an unrealistic
setting, and predicting articulation from acoustics is very
challenging and perhaps not necessary; finding good corre-
lated projections may be sufficient.

Supervised single-view learning via LDA: When we have
labels and a single (acoustic) view, it is common to use lin-
ear discriminant analysis (LDA) or its extensions [2, 3]. LDA
learns a discriminative transformation matrixL that maps fea-
ture vectors from the same class to nearby vectors while maxi-
mally separating the projected class means. It is easy to check
that LDA is a special case of CCA where the second view is
the class label represented in the following way (a “one-hot”
representation): If the ith training sample belongs to class c,
where 1 ≤ c ≤ C, then Z = {0, 1}C×N and the kth dimen-
sion of Z is 1 if k = c and 0 otherwise:

[zi]k =

{
1 if k = c,
0 otherwise . (3)

Supervised single-view learning via neural networks: In
the single-view supervised setting, neural networks are often
used to learn nonlinear transformations. The transformed fea-
tures are outputs of either the network’s final layer (as in tan-
dem systems [4]) or a narrow hidden layer (bottleneck fea-
tures [5]). In this work, we use bottleneck features and con-
sider these to be our input X for all supervised methods.
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2.1. Supervised multi-view learning
Multi-view feature learning is typically used as an unsuper-
vised technique, but when training labels are also available,
we can use them to learn features that are more discrimina-
tive. Why might the second view (here, articulation) be useful
even in the presence of labels? One reason is that this second
view may “guide” the learning into a good part of the space
when directly finding a discriminative subspace is difficult,
for example by identifying and removing noisy dimensions.
Another reason is that the labels may not be for the target task,
but rather for a proxy task; this is often the case in acoustic
feature learning, where phonetic frame labels are used but the
ultimate task is continuous phone/word recognition.

We next describe several ways of combining labels with
the second articulatory view for feature learning. We as-
sume the labels are represented as vectors in RC using the
“one-hot” representation of Eq. (3). There are a number of
techniques that have been suggested for this setting, includ-
ing multi-view extensions of LDA [19, 20], labeled exten-
sions of CCA [21], and generalizations that subsume both of
these [22]. In this work we select a few approaches that are
straightforward to solve via one or two eigenproblems.

2.1.1. CCA on bottleneck features
The first way we combine two views with labels is to simply
apply CCA to the learned bottleneck features. The remaining
methods below further use the labels in a second stage.

2.1.2. CCA with concatenated labels and articulatory data
One straightforward approach is to consider the labels to be
part of the second view, by appending them to the articulatory
data and then using CCA. The transformation matrix is then
given by solving the modified CCA problem{

Û , V̂
}

= arg max
U,V

ρ

(
U>X,V >

[
Y
Z

])
(4)

and the final acoustic feature transformation is L = Û .

2.1.3. Concatenated LDA and CCA features

We can also consider solving two multi-view problems, one
with articulatory data as the second view and another with
the labels as the second view, and concatenating the results;
i.e., concatenating CCA and LDA features. Let U,W denote
transformations learned with CCA and LDA, respectively:{

Û , V̂
}

= arg max
U,V

ρ
(
U>X,V >Y

)
(5){

Ŵ , T̂
}

= arg max
W,T

ρ
(
W>X,T>Z

)
.

Our final feature transformation matrix is then L =
[
Û Ŵ

]
.

2.1.4. LDA on CCA features

Another option is to first learn CCA-based features, and then
to learn a supervised transformation of those features via
LDA. The CCA step could be done on either raw features

(unsupervised) or on the supervised bottleneck features as in
Sec. 2.1.1; here we only consider the latter. The final trans-
formation is given by{

Ŵ , T̂
}

= arg max
W,T

ρ
(
W>Û>X,T>Z

)
, (6)

where Û is given in (5). The final transformation is L = ÛŴ .

2.1.5. Many-view learning with generalized CCA (GCCA)

There are several generalizations of CCA for any number of
views J ≥ 2 [23, 24, 25]. We follow the formulation intro-
duced by Carroll [24], which seeks a common latent represen-
tation (“group configuration”) G ∈ Rm×N and view-specific
transformation matrices Ûj ∈ Rdj×m, 1 ≤ j ≤ J, that solve

minimize
J∑

j=1

∥∥G− U>j Xj

∥∥2
F

subject to GG> = I

, (7)

where Xj ∈ Rdj×N is the feature matrix for the jth view. In
our case J = 3, X1 = X,X2 = Y,X3 = Z, and the final
transformation matrix is L = Û1. G is given as the solution
to the eigenvalue problem [25]: J∑

j=1

X>j

(
XjX

>
j

)−1
Xj

G>= G>Λ, (8)

and the transformation matrices Ûj are given as

Ûj =
(
XjX

>
j

)−1
XjG

>. (9)

As before, we implement a regularized variant by adding rjI
to each autocovariance term XjX

>
j in Eqs. (8, 9).

3. EXPERIMENTS
We test the proposed features for phonetic recognition on
a subset of the University of Wisconsin X-ray Microbeam
Database (XRMB) [12] of acoustic and articulatory record-
ings. The setup is the same as in previous related work [11].
Baseline acoustic features are mean- and variance-normalized
13-dimensional mel-frequency cepstral coefficients (MFCCs)
and their 1st and 2nd derivatives. The articulatory data are hor-
izontal and vertical displacements of 8 pellets on the speaker’s
lips, tongue, and jaw, yielding a 16-dimensional vector at each
sample, downsampled to the MFCC frame rate. We use data
from two randomly chosen male speakers (JW11, JW24) and
two female speakers (JW13, JW30). The input features to the
two bottleneck networks are the acoustic and articulatory fea-
tures concatenated over a 7-frame window around each frame,
giving 273-dimensional acoustic inputs and 112-dimensional
articulatory inputs.

We compare baseline and transformed acoustic features
in a speaker-dependent setting. The recognizers use 3-state
monophone HMM/GMMs with a TIMIT bigram language
model (LM); an XRMB LM would be too biased due to
XRMB’s limited utterance inventory. We use a five-fold setup
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Speaker JW11 JW30 JW13 JW24 Average
unsupervised baseline MFCC 32.5 34.5 26.1 30.7 31.0

unsupervised multi-view CCA (MFCC, Artic) 31.4 33.0 25.9 29.4 29.9

supervised baselines LDA (MFCC) 31.8 31.9 25.6 30.8 30.0
PCA (BNx) 33.0 29.8 23.4 27.7 28.5
LDA (BNx) 28.1 29.6 23.8 27.8 27.3

supervised multi-view Sec. 2.1.1 CCA (BNx, BNy) 27.2 29.1 22.5 27.9 26.7
Sec. 2.1.2 CCA (BNx, BNy ⊕ Lab) 26.9 29.4 22.8 27.4 26.6
Sec. 2.1.3 CCA (BNx, BNy) ⊕ LDA (BNx) 26.5 30.4 23.2 27.9 27.0
Sec. 2.1.4 LDA (CCA (BNx, BNy)) 26.4 29.1 21.9 26.9 26.1
Sec. 2.1.5 GCCA (BNx, BNy , Lab) 25.7 28.9 22.3 26.9 25.9

Table 1. Revised phonetic error rates (%) averaged over five test sets for each speaker, and average over the speakers. In all cases except
unsupervised baselines, MFCCs are appended to the indicated features. Notation: Artic = raw articulatory features; BNx = acoustic bottleneck
features; BNy = artic. bottleneck features; Lab = labels in “one-hot” representation; “METHOD (features)” denotes application of METHOD
to the features in parentheses; ⊕ denotes concatenation. Example: CCA (BNx, BNy ⊕ Lab) denotes CCA where one view is acoustic
bottleneck features and the second view is articulatory bottleneck features appended to labels. See the indicated sections for further details.

with five separate experiments for each speaker, each using
60% of the data for learning projections and HMM/GMM pa-
rameters, 20% for development, and 20% for testing. We
report average error rates over the five non-overlapping test
sets. For baseline bottleneck experiments, we use a bottle-
neck network topology of 273–1745–35–1745–39, followed
by either a PCA rotation or LDA rotation and optional di-
mensionality reduction, following the setup of [5]. For multi-
view experiments, a bottleneck layer of size 150 is used in
order to allow for more freedom in dimensionality reduction
experiments. We use rectified linear units and pre-training
with de-noising auto-encoders (DAE) and dropout. Follow-
ing [26], we initialize the weights at the ith DAE layer uni-
formly randomly in the interval

[
−
√

6
wi−1+wi

,
√

6
wi−1+wi

]
,

where wi is the width of the ith layer. The learning rate was
chosen using the adaptive learning rate method ADADELTA
[27]. We used the Deepmat toolkit for learning bottleneck
features [28]. We tune hyper-parameters (dimensionalities,
regularization parameters rx, ry , number of Gaussians, LM
penalty/scale) independently on each development set. For
GCCA, we sub-sample the data to 10, 000 frames for im-
proved speed (a possible future improvement is to use incre-
mental matrix factorization with all of the data, as in [11]). As
in previous work, performance is better when concatenating
the learned features with the baseline MFCCs; all of the given
results are therefore with concatenated features. We empha-
size that the HMM/GMMs are trained and tested on acoustic
data only; the articulatory data is not used after the transfor-
mation learning step.

Table 1 shows the phonetic error rates for the four speak-
ers, as well as averages over all speakers. For comparison
with earlier unsupervised multi-view work, we include results
for CCA applied to raw MFCCs and articulatory features1. As
might be expected, the best supervised baselines improve over

1Baseline MFCC and CCA results are improved over our earlier results
in [11], due to improved tuning. All systems here are tuned in the same way.

unsupervised multi-view techniques. Supervised multi-view
techniques yield an additional improvement over supervised
single-view techniques. Average improvements over the best
supervised baseline (LDA on bottleneck features) range from
0.7% to 2.4% absolute (2-9% relative). While the supervised
multi-view methods all perform similarly, the most success-
ful method on average (as well as on most speakers) is many-
view GCCA with labels as a third view.

4. CONCLUSION

Our results indicate that acoustic features learned using ar-
ticulatory measurements and phonetic labels, via supervised
multi-view learning, are useful for phonetic recognition. Not
surprisingly, the use of labels to learn bottleneck features im-
proves over previous unsupervised results. What is less self-
evident is that a second data view (here, articulatory measure-
ments) should help on top of the supervised bottleneck fea-
tures. The fact that multi-view learning helps here even in the
presence of labels suggests that there is indeed something to
be learned from such an auxiliary view, perhaps by making
the discriminative feature learning easier, or perhaps because
the discriminative problem (frame classification) is not pre-
cisely the same as our ultimate goal (continuous recognition).

Previous work has shown that in the unsupervised multi-
view case, nonlinear transformations provide further im-
provements over linear ones, and the features generalize to
new speakers for whom no articulatory data are available
even at training time [11]. These are natural extensions for
our work here with the supervised case. Other directions
for future work include additional supervised multi-view ap-
proaches [22, 23, 29], as well as the use of additional views
besides articulatory tracks. To our knowledge only video has
been used with speech in a similar multi-view setting [30, 31],
but any of the other types of measurements being explored for
speech (MRI [32, 33], ultrasonic sensors [34, 35], tongue ul-
trasound [36], muscle EMG [37]) could be good candidates.
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