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ABSTRACT

We introduce a novel set of features for speech/music dis-
crimination derived from chroma vectors, a feature that rep-
resents musical tonality. These features are shown to out-
perform other commonly used features in multiple conditions
and corpora. Even when trained on mismatched data, the new
features perform well on their own and also combine with
existing features for further improvement. We report 97.1%
precision on speech and 93.0% precision on music for the
Broadcast News corpus using a simple classifier trained on
a mismatched corpus.

Index Terms— voice activity detection, music detection,
amplitude modulation, chroma

1. INTRODUCTION

Speech/music discrimination or classification is highly rele-
vant to both speech and music processing. In some cases,
such as monitoring radio broadcasts for content type, the clas-
sification and annotation is the sole goal. In other cases, how-
ever, distinguishing between music and speech is a front-end
to a downstream application, whether it be automatic speech
recognition or music genre classification.

Segmenting an audio stream prior to a costly process is
valuable for several reasons. For one, recognizing sections of
a signal that do not pertain to the task at hand reduces com-
putation time and allows for more efficient resource alloca-
tion. Additionally, front-end audio classification can purify
data for more accurate training models and cleaner testing.
These issues are especially important when the data contains
both speech and music, because speech and music are both
rich signals that are often difficult to distinguish for generic
activity detectors.

Speech/music classification research has examined a va-
riety of techniques in the last several decades. Saunders [1]
used several statistics of zero-crossing rate (ZCR) to label FM
radio broadcasts. Scheirer and Slaney [2] explored a larger
set of features with several classifiers and found that syllabic-
rate amplitude modulation energy, spectral flux variance, and
overlaps in multi-band autocorrelations (called the pulse met-
ric) were the most effective combination. Another study [3]

focused on single-feature detectors and found cepstral fea-
tures to be best, followed by amplitude, pitch, and then zero-
crossing rate. In [4], linear discriminant analysis was applied
to a large feature set with success. Pangiotakis and Tziritas [5]
used a sieve-like approach, which is created by connecting a
series of high precision detectors that apply pre-determined
thresholds to low dimensional features like ZCR and root-
mean-square (RMS) variance.

The goals and constraints of speech/music discrimination
are highly task specific. Some applications can afford high-
complexity solutions, such as the the multi-layer perceptron
and HMM classifiers in [6] or [7]. In [8], both a sieve-like
structure and a learning algorithm are placed in series. Alter-
natively, in several of the previously mentioned studies, such
as [1, 2, 5], fast and efficient computation is a top priority, and
so some accuracy is sacrificed in the name of speed.

In this paper, we are interested in the set of applications
that require a lightweight computation. We will introduce
a new feature set for speech/music classification based on
pitch class profiles or chroma vectors, a feature typically used
in music tonality tasks such as chord or key identification.
We will then compare this new feature to several of the best
features from previous research using simple classifiers on
the publicly available GTZAN Music/Speech dataset [9]. Fi-
nally, we will demonstrate the cross-corpus applicability of
these features by annotating speech and music in the Broad-
cast News corpus [10], treating it strictly as a held-out evalu-
ation data set.

2. FEATURES FOR SPEECH/MUSIC
DISCRIMINATION

Past research has examined many features for speech/music
discrimination, but the most successful features are designed
to exploit several known differences between the structure
of speech and music. Examples of characteristics utilized in
prior work include the alternation in speech between voiced
and unvoiced sections, or the wideband attack common in mu-
sical percussion. In this section, we introduce a new discrimi-
nation feature that exploits the lack of musical scale in speech.
Music, on the other hand, is typically dictated by specific keys
and tonal structures that follow strict patterns in the frequency
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(a) Speech Chromagram

C
hr

om
a 

bi
n

Time (s)
5 10 15 20 25

0

10

20

30

(b) Music Chromagram

Fig. 1. Example chromagrams for speech and music samples.
Note the greater prevalence of peaks in music chroma as com-
pared to speech.

domain. Saunders mentioned a similar concept in [1] but, to
our knowledge, the use of music tonality features has not been
attempted until now.

Pitch-class profiles [11], or chroma vectors, are used in
music processing for any task that involves the tonality of mu-
sic, such as key or chord identification. They utilize a prin-
ciple known as octave invariance which states that there is
no functional difference between musical notes separated by
a doubling of frequency. In other words, a chord in one oc-
tave serves the same musical purpose as the same chord in
another octave. Pitch-class profiles utilize this principle to re-
duce the spectrum X(f) by summing exponentially separated
frequencies into the same bin, essentially folding octaves of
the spectrogram into the same range.

chroma(k) =
R−1∑
r=0

|X(2
k+rK

K fmin)| (1)

Here, we are calculating the kth chroma bin, and K is the
total number of bins in the chroma vector, R is the number of
octaves spanned by the computation, and fmin is the lowest
frequency included in the summation.

However, this chroma feature alone is not particularly ef-
fective for speech/music classification. The chroma feature
captures information about chord and key which will vary
greatly between musical segments, leading to a highly modal
distribution of all music. For the purpose of speech/music
discrimination, we propose a simple, yet powerful, measure
of peakiness in the chroma vector.

Musical tones will tend to locate around certain frequen-
cies more often than others. The commonality of these fre-

quencies and their relationships are determined by the music
theory of that particular culture or style of music, but almost
all music follows some basic set of rules regarding notes and
relationships between those notes. Speech, on the other hand,
is far less strictly regulated in the use of pitch. These differ-
ences will lead to stronger and more separated peaks in the
chroma vectors of music, while the chroma vectors of speech
will tend to be smoother with mounds of energy around the
bins corresponding to formant and fundamental frequencies
of the speech. As a result, we expect musical chroma vec-
tors to be more peaked as a function of k when compared to
speech chroma vectors. This characteristic is clear in the ex-
amples in Fig. 1.

We explore two metrics of this characteristic. For one,
we calculate the energy after differentiation of a normalized
chroma vector.

Chroma Diff. =
K−1∑
k=0

|c(k)− c(mod(k + 1,K))|2 (2)

Here, c is the chroma vector from Eq. (1) after energy nor-
malization. Note that the differentiation is calculated circu-
larly (with modulo function), because the musical tones rep-
resented by the chroma vector are circularly related.

The second proposed feature is calculated by summing
the high-frequency energy in the normalized spectrum.

Chroma High Freq. =
lmax∑

l=lmin

|F{c(k)}(l)|2 (3)

Here, F{·} represents the Fourier transform, and so the fea-
ture is the total energy in the spectral range [lmin,lmax].

The histograms for these two proposed features (corre-
sponding to the chromagrams in Fig. 1) are plotted in Fig. 2,
showing clearly separate speech and music distributions with
only small overlap. Note that log-compressed features are
used to gaussianize the energy metrics.

The specific parameters used to calculate these features
will be discussed in Section 3.2.

3. EXPERIMENT

We tested the value of these new choma-derived features
in two experiments. First, we ran a preliminary evaluation
and feature selection on the GTZAN Music/Speech dataset,
which is composed of 64 examples of 30-second speech
recordings and 64 examples of 30-second music recordings.
This dataset is diverse, containing multiple styles of music
as well as speech recorded in many conditions. For previous
studies using this corpus, refer to [12, 13].

Our secondary goal was to examine the cross-corpus com-
patability of these features, so we used models trained on the
GTZAN Music/Speech data to discriminate speech and music
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Fig. 2. Histograms for the novel features derived from chroma
representations. In each case, the greater peakiness in music
chroma results in larger feature values.

segments from the Broadcast News corpus [10]. In this exper-
iment, we only examined sections that were labeled as speech
or music (ignoring segments that contain neither). Broadcast
News differs from the GTZAN corpus in that speech and mu-
sic both appear in the same file and with arbitrary duration,
and also because speech and music are imbalanced in the set
(90.5% speech, 2.4% music, 7.1% speech and music).

Both corpora were downsampled to 8 kHz prior to feature
computation.

One shortcoming of these experiments is that they only
test non-tonal English. Examining the efficacy of these fea-
tures on tonal languages (which may behave differently in the
chroma space) would be a valuable task for the future.

3.1. Features

In addition to the chroma-derived features, we computed a
collection of features that have been successful in past re-
search. Short-time metrics (such as zero-crossing rate and
spectral centroid) were calculated for 25ms windows every
10ms, after which their statistics were calculated over 1 sec-
ond frames.

• Normalized RMS standard deviation - Standard de-
viation of short-time RMS divided by the mean. [5]

• Silent interval ratio - The proportion of short-time
RMS values that are below the mean for the frame. [5]

• Silent interval frequency - The number of continuous
segments of short-time RMS measurements that are be-
low the mean RMS for the frame. [5]

• ZCR variance - Variance in the zero-crossing rate
within short-time frames. [1]

• Spectral centroid variance - Variance in the spectral
centroid of short-time spectra. [2]

• Spectral flux variance - Variance of the energy in the
differentiation of neighboring short-time spectra. [2]

• Mel-frequency subband modulation syllabic rate
energy - Total energy near 4 Hz in the modulation
spectra of mel-frequency subbands. [2]

• Mel-frequency subband modulation spectral cen-
troid - Spectral centroid in the average of modulation
spectra calculated on mel-frequency subbands (a fea-
ture used in speech activity detection). [14]

Tempo-based features have also been used in the past
(such as the pulse metric in [2]), but we found such measures
are not as effective when limited to 1 second of audio context.

3.2. Chroma Feature Parameter Selection

There are a few parameters for the new features that require
selection. First, we must select the number of chroma bins
(K in Eq. (1)). Typically, 12 bins are used, because there are
12 Western music pitch classes. However, in order to encour-
age a greater degree of peakiness, and also to generalize be-
yond Western music, we examined using multiples of 12. Af-
ter preliminary experimentation, we found performance im-
proved steadily with increasing number of bins, before satu-
rating around 36. We also set fmin in Eq. (1) to 220Hz (a
common tuning for A3), and, for the high-frequency feature
(Eq. (3)), we set the summation boundary bins lmin and lmax

to 6 and 18, respectively.
Both types of chroma features were calculated for 100ms

windows with a 25ms hop, then averaged over one second
frames prior to the calculations in Eqs. (2) or (3).

3.3. Results

The results are separated into three separate sets. First, we
examined all 10 features as individual detectors. Then, we
performed feature selection to find the best multi-dimensional
classifier. Both of these experiments were performed on the
GTZAN Music/Speech dataset and fit a Gaussian distribution
to each type of signal. Frames were assigned to the model
with the higher likelihood. Evaluations were performed us-
ing 8-fold cross-validation with separate files in train and test
datasets.

Third, we conducted a domain-mismatch experiment us-
ing the system resulting from the feature selection process.
The new domain for our experiment was the Broadcast News
database, which consists of audio from television and radio
shows. We annotated the HUB4 set using our system trained
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GTZAN Music/Speech Overall Speech Music
Norm. RMS StDev 82.1% 85.4% 78.9%
Silent Interval Freq. 75.3% 66.1% 84.5%
Silent Interval Ratio 72.6% 95.2% 50.0%
Norm. ZCR Var. 76.6% 80.8% 72.5%
Spec. Centroid Var. 81.1% 84.2% 78.0%
Norm. Spec. Flux Var. 74.2% 75.6% 72.8%
Mod. Spec. Syllabic 77.6% 75.8% 79.5%
Mod. Spec. Centroid 79.2% 81.3% 77.1%
Chroma First Diff. 86.2% 87.1% 85.2%
Chroma High Freq. 86.6% 87.6% 85.6%

Table 1. Overall classification accuracy and recall results for
8-fold cross validation on the GTZAN Music/Speech dataset.

Feature Selection Overall Speech Music
Chroma High Freq. 86.6% 87.6% 85.6%
+ Mod. Spec. Centroid 91.9% 93.5% 90.2%
+ Norm. RMS StDev 93.5 % 95.2% 91.7%

Table 2. Results for the first three features selected using the
GTZAN Music/Speech dataset.

on the GTZAN corpus in order to determine how our features
adapt to data from an unseen domain.

As part of the domain-mismatch experiment, we also
tested a baseline system using generic features. Our base-
line used mel-frequency cepstral coefficients (MFCCs) with
deltas and double-deltas (calculated with RastaMat [15]) in
separate speech and music GMMs with 16 components each
(also trained exclusively on the GTZAN corpus before testing
on the held-out Broadcast News audio).

3.3.1. Single-Feature Detectors

Results for the single-feature detectors are shown in Table 1.
It is immediately evident that both new features yield the best
accuracies. The chroma high-frequency feature slightly out-
performs chroma differentiation, but it is worth also noting
that chroma differentiation could potentially be preferred for
its slightly faster computation (requiring only a first-order dif-
ference instead of a second FFT). Other features, such as nor-
malized RMS standard deviation, spectral centroid variance,
and modulation spectral centroid, are also effective, but the
best accuracies are achieved with the chroma features.

3.3.2. Feature Selection

The feature selection process for the first three features is
shown in Table 2. The chroma high-frequency energy is the
first selected feature. The modulation spectral centroid pro-
vides the biggest additive gain to chroma high-frequency en-

Broadcast News Test Speech Music
MFCCs w/ 16-GMM 88.2% 89.6%
Chroma High Freq. w/ 1-GMM 84.2% 90.3%
Mod. Spec. Centroid w/ 1-GMM 91.1% 76.0%
Norm. RMS StDev w/ 1-GMM 93.7% 76.4%
Best 3 w/ 1-GMM 97.1% 93.0%

Table 3. Test results on the Broadcast News dataset using
models trained on the GTZAN Music/Speech dataset.

ergy, even though several other features are individually bet-
ter. The next feature selected was normalized RMS standard
deviation, after which performance saturates. These three fea-
tures combine to make a quick and lightweight detector that is
able to successfully classify 93.5% of the speech/music audio.

3.3.3. Channel Mismatch

The results on Broadcast News for the selected features and
baseline MFCC system are shown in Table 3. These preci-
sion rates are calculated for speech without music or music
without speech, as the desired classification for overlapping
regions depends on the downstream application (and can be
controlled by adjusting the decision threshold).

Each single-feature classification performs reasonably
well (especially considering the complexity of the task and
simplicity of the model), but the combination of the three
yields very high precision, despite the mismatch between
train and test data. Also, the combined system outperforms
the MFCC baseline (also trained on GTZAN Music/Speech)
for both speech and music.

These numbers could likely be further improved by incor-
porating temporal context, either by filtering of the detection
scores or a higher complexity method like an HMM.

4. CONCLUSION

We introduced a new set of chroma-based features for classi-
fying speech and music and demonstrated that they improve
on the best features for the task found in past research. The
chroma features are quick to calculate and effective, yielding
high accuracy rates even on their own with a simple classi-
fier. However, when paired with two other single-dimensional
features, speech in the Broadcast News dataset was classified
with 97.1% precision, and music with 93.0% precision. This
is especially noteworthy as it was performed on real-world au-
dio after training on completely mismatched data. The exper-
iments demonstrate that these simple chroma or tonality fea-
tures create a lightweight but robust system for distinguishing
between speech and music. In the future, we would like to
examine the effect of tonal languages on the separability of
speech and music using these features.
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