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ABSTRACT
A subband hybrid (SBH) feature is developed for multi-
stream (MS) speech recognition. The fullband speech sig-
nal is decomposed into multiple subbands, each covers about
3 Bark along the frequency. Speech signal is analyzed
by a high-resolution filterbank of 4 filters/Bark and a low-
resolution filterbank of 2 filters/Bark to facilitate the repre-
sentation of both short-term spectral modulation and long-
term temporal modulation within a frequency subband. Ex-
periments on TIMIT corpus for English and RATS corpus for
Arabic Levantine show that the SBH feature significantly en-
hances the amount of information being extracted from indi-
vidual subbands. The MS system with performance monitor
achieves a substantial gain in performance over the single-
stream baseline.

Index Terms: noise robustness, multi-stream speech recog-
nition, subband feature

1. INTRODUCTION

The human auditory system takes a parallel scheme for
speech perception that is highly reliable under realistic en-
vironments [5, 1, 10]. To emulate the parallel processing
in human speech perception, a prototype multi-stream (MS)
phoneme recognition system is proposed in [15], and then
upgraded in several major aspects in [17]. The basic idea
is to decompose the fullband speech into multiple subbands,
each acting as an independent channel for speech recognition.
Since stationary white noise is rare in realistic environments,
it is assumed that at any time at least one or two of those chan-
nels are still functioning properly. For simplicity, no context
(i.e., lexical, syntactic, and semantic) information is utilized.

The MS system is superior to conventional single-stream
(SS) system in two aspects. First, noise is contained in narrow
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frequency bands, hence corruption of one channel has little
effect on the overall system. Second, the total error rate of
speech recognition can be effectively reduced by representing
the subband speech with a more informative feature.

Past studies on multi-stream speech recognition [15, 14,
17] were focused on how to fuse the information from mul-
tiple subbands. There were few studies on the acoustic fea-
tures for parallel processing. Typical short-term spectral fea-
ture, such as PLP and MFCC, is inappropriate for MS speech
recognition because the spectral-to-cepstral transform vio-
lates the band-independence constraint for parallel process-
ing. The long-term temporal modulation FDLPm feature [6],
which characterizes the peaks of subband envelopes, is paral-
lel by nature, but it is optimized for single-stream systems.

In our previous MS system [17] the speech features were
derived simply by splitting the FDLPm feature into multiple
segments. Our recent study show that a multi-resolution filter-
bank of 2.5 and 1 Bark bandwidth significantly out-performs
the filterbank of 2.5 Bark uniform bandwidth in FDLPm. In
addition, a spectral sampling rate of 4 filters per Bark is gener-
ally better than 1 filter per Bark for subband phoneme recog-
nition [11].

In this study we develop a subband hybrid (SBH) feature
for multi-stream speech recognition with an aim to boost the
performance in individual subbands. The SBH feature rep-
resents both long-term temporal modulation and short-term
spectral modulation within a frequency subband.

2. MULTI-STREAM SPEECH RECOGNITION

Figure 1 depicts the block diagram of the MS phoneme recog-
nition system. It takes the Hidden Markov Model - Ar-
tificial Neural Network (HMM-ANN) paradigm [4]. The
full-band speech is decomposed into multiple (7 or 5 for
wide/narrow-band speech) independent bands, named band-
limited streams, and then encoded by the SBH feature for
phoneme classification. Next, the information from multiple
bands are integrated by a set of neural nets to form many com-
binations, named processing streams. A performance monitor
is used to evaluate the quality of posteriors for each process-
ing stream. The topN best posteriors are averaged to produce
a more reliable estimation. Viterbi algorithm is applied to de-
code the phone sequence. It is assumed that all phonemes
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Fig. 1. Block diagram of multi-stream phoneme recognition system

have equal prior probabilities. The state transition matrix is
fixed with equal probabilities for self and next state transi-
tions.

Within each subband a multi-layer perceptron (MLP) is
trained to estimate the posterior probability of a phoneme
given the partial acoustic evidence. The size of the neural
net is dependent on the number of training patterns. The di-
mensionality of the linear output of MLP is reduced to 25 by
applying the Karhunen-Loeve Transform (KLT).

The posterior features from band-limited streams are in-
tegrated by a set of MLPs trained to fuse each of all possible
combinations of band-limited streams (31/127 combinations
for 5/7 subbands). A performance monitor named the M mea-
sure [7] is used to evaluate the reliability of individual pro-
cessing streams based on the posterior probability produced
by the fusion MLPs. For a given window of T consecutive
frames the M measure is defined as

M(∆t) =
∑T−∆t

t=0 D(Pt, Pt+∆t)
T −∆t

(1)

where D is the symmetric KL divergence between two distri-
butions of posterior probability, Pt and Pt+∆t, separated by
∆t along time. For each utterance, the M measure is com-
puted for all 31/127 processing streams. Streams that are
more reliable usually have higher M values. The posterior
probabilities of top N best processing streams are averaged
to produce a more reliable estimation.

3. SUBBAND HYBRID FEATURE

The schematic diagram of the SBH feature for multi-stream
speech recognition is depicted in Fig. 2.

3.1. Speech Analysis

The time-domain speech signal is transformed into frequency
domain by using a discrete cosine transform (DCT) trans-
form (≥ 4000 frequency points). Frequency-domain linear
prediction (FDLP) [2, 6] is used to produce two spectro-
temporal representations for the short-term spectral feature
and long-term temporal feature within each frequency sub-
band. Two filterbanks, a high-resolution (hi-res) WH and a
low-resolution (lo-res) WL, are employed to divide the DCT

coefficients into multiple bands. Fig. 3 show the hi/lo-res fil-
terbanks WH/L. WH has a bandwidth of BH = 1.0 Bark
with a spectral sampling rate of 4 filters per Bark. WL has
a bandwidth of BL = 2.5 Bark with a spectral sampling rate
of 2 filters per Bark. For a band-limited stream of about 3
Bark, the hi/lo-res filterbanks have 12 and 6 filters respec-
tively. Speech signal is analyzed by multiplying the DCT co-
efficients with a set of cosine windows (Eq. 2), as depicted in
Fig. 3.

WH/L
m (f) = 0.5 + 0.5 cos(π(f − fm)/BH/L) (2)

where fm andB are the center frequency and 6dB filter band-
width (i.e., amplitude = 0.5) of the mth window (filter), both
on Bark scale. Since the cosine windows are defined on Bark
scale, this process also converts the linear frequency into au-
ditory frequency. Next, the DCT coefficients are divided into
multiple subbands (5 and 7 for narrow/wide speech respec-
tively). Two FDLP spectrums are generated based on the out-
puts of hi/lo-res filterbanks respectively. The hi-res spectrum
is used for short-term spectral feature, while the lo-res spec-
trum is interleaved with the odd bands of hi-res spectrum and
used for the computation of long-term temporal feature.

3.2. Short-term Spectral Modulation Feature

The short-term spectral modulation feature is computed on
the basis of hi-res FDLP spectrum, which includes 12 en-
velopes of band-passed signals. To estimate the short-term
spectral amplitude, the FDLP spectrum is divided into short
frames of 25 ms with a step size of 10 ms, and then multi-
plied with a hamming window, followed by averaging along
the time axis. Next, the cepstral coefficients of the log spec-
tral amplitude are liftered with a cutoff quefrency of 0.6. The
first 9 cepstral coefficients (DC component not included) and
their first and second derivatives are used as the short-term
spectral modulation feature.

3.3. Long-term Temporal Modulation Feature

The long-term temporal modulation feature includes a static
module, which involves a logarithmic operation, and an adap-
tive module [6], which simulates the adaptive compression of
auditory periphery [16]. The outputs from both modules are
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Fig. 2. Schematic diagram of SBH feature for multi-stream speech recognition

divided into short segments of 225 ms (i.e., the current frame
plus 10 frames before and after) with a step size of 10 ms.
Then the framed signals are transformed into the modulation
frequency domain by a DCT transform. The first 18 coeffi-
cients (corresponding to a cutoff modulation frequency of 40
Hz) of all 12 bands, together with frequency differentiation of
lo-res spectrum are concatenated to form the long-term tem-
poral modulation feature.

Fig. 3. Hi-res filterbank WH (solid curve) and lo-res filter-
bank WL (dashed curve) for subband feature

4. EXPERIMENTS

The SBH feature is tested for multi-stream phoneme recogni-
tion on both TIMIT corpus for American English and RATS
corpus for Arabic Levantine.

4.1. Phoneme Recognition Systems

The MS system is described in Sec. 2. For comparison, we
also tested the single-stream (SS) baseline system using the
MFCC, PNCC[9], and FDLPm feature [6]. It has two mod-
ules, a MLP trained to discriminate the phonemes based on
the acoustic feature, followed by a Viterbi decoder. Both the
MS and SS system are built as single-state monophone sys-
tems without using any context information.

The MLP has a size of 588×1000×40 for TIMIT and
420×1000×1000×250×38 for RATS. In the experiment on
TIMIT all neural nets are trained under clean condition. In the
other experiment on RATS, neural nets are trained and tested
under the same condition (channel) because the 9 channels
are distinctive from each other. Neural nets trained on one
channel do not generalize across other channels.

4.2. Speech Corpus

TIMIT corpus for American English consists of 5040 sen-
tences, of which 3696 are used for training, and the rest 1344
are used for testing. The target phoneme set contains 40
phonemes. The speech sounds are sampled at 16kHz.
RATS corpus for Arabic Levantine consists of 9 channels,
specifically, src for clean speech, and A, B, C, D, E, F, G, H
for various types of distortion. Each channel contains about
13–23 hours of speech. The target phoneme set consists of 38
phonemes. The speech sounds are sampled at 8kHz.

4.3. Data Analysis

In the first experiment on TIMIT speech corpus, the comtri-
bution of SBH feature for multi-stream speech recognition is
evaluated by comparing the results of multi-stream system us-
ing FDLPm feature. Two types of multi-stream systems are
included in this study. The MS denotes a simple version of
multi-stream system that has only one processing stream that
covers all subbands. The MS-PM denotes the full version of
multi-stream system with a performance monitor for stream
selection. The Oracle performance refers to the results of
MS-PM system, in which the best stream is manually picked
for each utterance. For completeness, the results of multi-
stream system are also compared with those of single-stream
baseline systems (denoted as SS) using MFCC, PNCC, and
FDLPm feature. In the second experiment, the results of SBH
feature for multi-stream systems are compared with those of
single-stream PLP baseline as well as oracle performance.

5. RESULTS

Results show that the SBH feature substantially out-performs
the FDLPm feature for almost all frequency bands. Fig. 4 de-
picts the subband phoneme accuracy, averaged over all con-
ditions (channels), for both TIMIT and RATS. The subband
phone sequence is obtained by applying the Viterbi decoder
to the posteriors from each subband neural net. For TIMIT
database the average phoneme accuracies of SBH feature are
about 10–30% relative higher than those of FDLPm feature
for subband 2–7, except for subband 1, which is relatively
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Table 1. Percent Error Rate (PER) (%) of multi-stream system on TIMIT

Noise SS MS MS-PM Oracle
(dB SNR) MFCC PNCC FDLPm FDLPm SBH FDLPm SBH FDLPm SBH

clean 33.50 33.51 31.35 31.27 30.04 29.98 29.45 23.78 24.01
babble (15) 65.14 58.93 57.10 52.80 47.05 49.68 45.16 42.85 39.22

subway (15) 57.42 49.48 46.62 45.15 38.28 40.79 36.28 34.11 30.65
factory1 (10) 74.65 72.05 68.10 69.87 63.74 67.10 61.56 59.91 54.72

restaurant (10) 72.48 67.14 63.14 65.03 58.19 61.61 55.69 55.18 49.38
street (5) 80.98 70.26 67.26 68.47 62.56 65.27 59.37 58.08 52.60

exhall (5) 79.90 74.97 70.67 71.16 69.47 68.67 64.46 61.85 58.57
f16 (0) 77.32 84.31 86.10 85.30 86.54 85.71 83.83 76.78 75.35
car (0) 90.24 52.58 54.32 48.76 40.79 40.24 35.48 34.30 30.14

∗ SS – single-stream baseline; MS – multi-stream system with only one stream including all subbands; MS-PM – multi-stream system with
a performance monitor; Oracle – multi-stream system with best stream manually picked for every utterance after decoding.

unimportant for speech recognition. For RATS corpus of Ara-
bic Levantine the SBH feature is about 7–15% relative better
than the FDLPm feature for all 5 subbands.

(a) TIMIT (b) RATS Arabic

Fig. 4. Subband phoneme accuracy of FDLPm and SBH (av-
eraged over clean and noisy conditions or channels)

The MS system with SBH feature is significantly better
than the same system using FDLPm feature for both clean
and all noisy conditions (refer to Tab. 1). With performance
monitor the percent error rate of MS-PM system is about 10–
35% lower than that of the single-stream FDLPm baseline
for almost all noisy conditions. The most gain in perfor-
mance (35%) is achieved for 0dB car noise, which affects
only the low frequency subbands. In contrast, the single-
stream MFCC baseline totally fails, while the and PNCC
baseline suggesting that the MS-PM system is superior for
narrow-band noise.

The MS-PM system show marginal gain (2.5%) for f16
noise which has a nearly white spectra and contaminates all
subbands. For almost all conditions except for exhall and f16
noise, the use of SBH features brings higher gain in perfor-
mance than stream selection by using performance monitor,
suggesting that the subband feature is critical for the success
of multi-stream system.

In the other experiment on RATS Arabic Levantine, the
MS-PM system show slight improvement on channel A, B,
C, D and about 10–50% increase in phoneme accuracy for

channel E, F, G, and H (refer to Tab. 2). Again, the use of
SBH features contributes most of the gain in performance. It
is hypothesized that the gain of stream selection diminishes
for channel A, B, C, D because speech in those channels are
corrupted by heavy noise in all 5 subbands.

Table 2. Phoneme Acc. (%) on RATS Arabic Levantine

Chan SS MS MS-PM Oracle

src 47.99 48.95 53.33 59.65
A 30.16 30.04 30.36 33.49
B 30.10 32.75 32.64 36.72
C 21.85 22.41 23.10 26.12
D 39.92 42.13 42.63 47.48
E 30.02 32.51 35.11 41.55
F 35.95 37.91 41.56 48.18
G 41.50 44.84 48.31 54.53
H 31.37 35.11 35.58 42.05

6. CONCLUSION

In this study we developed a subband hybrid (SBH) feature
for multi-stream speech recognition. It employs two filter-
banks of different bandwidth and spectral sampling rate for
the representation of both long-term temporal modulation and
short-term spectral modulation within a frequency subband.
Experimental results indicate that the use of SBH feature sig-
nificantly enhances the amount of speech information being
extracted from individual subbands. Accordingly, the multi-
stream system achieves a phoneme accuracy about 20–40%
higher than the single-stream baseline on TIMIT database,
with most of the gain in performance coming from the use
of SBH feature. For narrow-band RATS Arabic Levantine
the MS-PM system also significantly improves the phoneme
accuracy for clean and most noisy channels. The gain demi-
nishes when the speech sounds are corrupted in all subbands
due to heavy noise or unknown distortion.
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