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Fig. 1: The result of colorizing the Nano mushroom-like image acquired by the scanning electron microscopy. From left to right: the learned
heterogeneous feature epitome from the reference image, the reference image, the target image, the result by Welsh et al., the result by Gupta
et al., and our result.

ABSTRACT

Image colorization adds color to grayscale images. It not
only increases the visual appeal of grayscale images, but also
enriches the information conveyed by scientific images that
lack color information. We develop a new image coloriza-
tion method, epitomic image colorization, which automati-
cally transfers color from the reference color image to the
target grayscale image by a robust feature matching scheme
using a new feature representation, namely the heterogeneous
feature epitome. As a generative model, heterogeneous fea-
ture epitome is a condensed representation of image appear-
ance which is employed for measuring the dissimilarity be-
tween reference patches and target patches in a way robust
to noise in the reference image. We build a Markov Random
Field (MRF) model with the learned heterogeneous feature
epitome from the reference image, and inference in the MRF
model achieves robust feature matching for transferring color.
Our method renders better colorization results than the current
state-of-the-art automatic colorization methods in our experi-
ments.

Index Terms— Image Colorization, Epitome, Markov
Random Field

1. INTRODUCTION

Colorization adds color to grayscale images by assigning
color values to images which only contain a grayscale chan-
nel. It not only increases the visual appeal, but also enhances

the information conveyed by scientific images. For exam-
ple, the grayscale images acquired by the scanning electron
microscopy can be made more illustrative by adding differ-
ent colors to different parts of the images. However, the
manual colorization is tedious and time consuming, so it is
not suitable for batch process. To overcome this problem,
we propose an automatic colorization method using a new
feature representation called the heterogeneous feature epit-
ome. Figure 1 shows the colorization result for the Nano
mushroom-like (the Nano-surface structure) image, where
the reference image is manually colorized. The color infor-
mation is transferred from the reference image to the target
image automatically and faithfully by our algorithm.

Based on the amount of user intervention required, ex-
isting colorization techniques fall into two main categories:
user-aided (or interactive) colorization methods [1, 2] and au-
tomatic colorization methods [3, 4]. User-aided colorization
methods require users to provide color scribbles. For exam-
ple, the user scribble based method in [1] requires users to
draw color scribbles in the grayscale image, and the algo-
rithm propagated the user-provided color to the whole im-
age requiring that similar neighboring pixels should receive
similar color. The method by [2] employs color scribbles
for texture segmentation, and user-provided color is propa-
gated within each segment. Such methods require extensive
human labor and the quality of colorization depends on the
user-provided scribbles. Using a similar color image as a ref-
erence, the automatic colorization methods perform coloriza-
tion by transferring the color from the reference image to the
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grayscale image. However, the pixel-level matching based
on luminance value and neighborhood statistics adopted by
[3] suffers from spatial inconsistency and the user-provided
swatches are required to guide the matching process in many
cases. The most recent work by Gupta et al. [4] proposes a
cascade feature matching scheme for matching the target su-
perpixels to the reference superpixels. However, it is difficult
for their method to produce correct feature matching in case
that the same objects in the reference image and target image
exhibit large change in pose or orientation. Moreover, their
feature matching scheme does not handle noise or outliers in
the reference image.

We propose a new automatic image colorization method,
epitomic image colorization. Epitome [5] is a generative
model which summarizes raw image patches into a condensed
representation similar to Gaussian Mixture Models. In order
to achieve feature matching robust to both noise and the large
change in the pose or orientation of the objects, we propose
a new patch dissimilarity measure using the heterogeneous
feature epitome, where the target patches are matched to
the epitome patches rather than the reference patches. This
robust patch dissimilarity measure is employed to build the
data likelihood term in a Markov Random Field (MRF), and
the color is faithfully transferred from the reference image to
the target image by inference in the MRF model, rendering a
smooth feature matching. The effectiveness of our method is
demonstrated by the experimental results.

2. FORMULATION

2.1. Description of Epitomic Image Colorization

Given a reference color image cI and the target grayscale im-
age gI, we learn the heterogeneous feature epitome e from the
reference image, then perform inference in the MRF model
with a robust patch dissimilarity measure by e so as to transfer
the color information from patches of cI to the corresponding
grayscale patches of gI. We will illustrate the learning and
inference process in detail in the following text.
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Fig. 2: The hidden mapping Tk maps the image patch Zk to its
corresponding epitome patch eTk of the same size, and Zk can be
mapped to any possible epitome patch in the epitome e.

2.2. Learning Epitome with A Single Feature

Being a generative model, the epitome of an image summa-
rizes the raw image patches into a condensed representation
of a size smaller than the original image, and it approaches
this goal in a manner similar to Gaussian Mixture Models
(GMM) [6]. Epitome differs from GMM in that the param-
eters (mean and variance) of the Gaussian components can be
overlapping with each other[5], so as to improve the represen-
tation capability of finite parameter space [7, 8]. The epitome
e of an image I contains three parameters, e = (µ,ϕ,π),
with µ and ϕ representing the Gaussian mean and variance
respectively. Suppose Q patches are densely sampled from
the reference image, i.e. {Zk}Qk=1. Each patch Zk is associ-
ated with a hidden mapping Tk which maps the image patch
Zk to the epitome patch eTk

= (µTk
,ϕTk

) . π indicates the
prior distribution of the hidden mapping. All the Q patches
are generated independently from the epitome and the corre-
sponding hidden mappings as below:

Q∏
k=1

p({Zk}Qk=1|{Tk}Qk=1, e) =

Q∏
k=1

p(Zk|Tk, e) =

Q∏
k=1

N (Zk;µTk ,ϕTk)

p(·) is the probability function, N (·;µ, ϕ) represents a Gaus-
sian distribution with mean µ and variance ϕ. Based on the
above formula and illustrated by Figure 2, the hidden map-
ping Tk is a hidden variable that indicates the location of the
epitome patch from which the observed image patch Zk is
generated, and it behaves similar to the hidden variable in the
Gaussian mixture models that specifies the Gaussian compo-
nent from which a specific data point is generated. The epit-
ome e is obtained by maximizing the log likelihood function:

e = argmax
ê

log p
(
{Zk}Qk=1|ê

)
, (1)

with the Expectation-Maximization (EM) algorithm [9, 10].

2.3. Heterogeneous Feature Epitome

The above learning process is applicable for a single type of
feature of cI (the pixel colors), and it can be extended to learn-
ing the epitome with heterogeneous features for a more robust
feature representation. We extract three types of features from
the sampled patches, i.e. the YIQ channels, the dense SIFT
feature [11] and the rotation invariant Local Binary Pattern
(LBP) [12]. We then learn the color epitome eY IQ, the dense
SIFT epitome eSIFT and the LBP epitome eLBP jointly by
sharing the same hidden mapping:

p(Zk|Tk, e) = p(ZY IQ
k |Tk, e

Y IQ)λcolp(ZLBP
k |Tk, e

BBP )λlbp

p(ZSIFT
k |Tk, e

SIFT )1−λcol−λlbp (2)

where 0 ≤ λcol, λlbp ≤ 1 are parameters balancing the
preference for the color and the LBP feature, and in this
way we obtain the heterogeneous feature epitome e =(
eY IQ, eSIFT , eLBP

)
for our colorization method.
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2.4. Robust Patch Dissimilarity Measure via Epitome

Let Q̂ patches {Ẑk}Q̂k=1 be densely sampled from the target
image gI (these patches cover the entire gI). We propose the
following function measuring the dissimilarity between the
target patch Ẑi and the reference patch Zj with the heteroge-
neous feature epitome e learned from cI:

De

(
Ẑi,Zj

)
= 1− p(T̂ ∗

i |Zj , e) (3)

where T̂ ∗
i is the most probable mapping for Ẑi:

T̂ ∗
i = argmax

T̂i

p
(
T̂i|Ẑi, e

)
(4)

By (3), the dissimilarity between Ẑi and Zj is inversely pro-
portional to the posterior of the most probable mapping for
Ẑi conditioned on the reference patch Zj , which improves
the robustness to noise or outlier. To see this, suppose Zj is
an outlier or suffering from the noise in cI, then all the poste-
riors {p(Tl|Zj , e,π)}Tl=1 are small, and De

(
Ẑi,Zj

)
is large

for all the target patches
{
Ẑi

}
. It follows that the matching

reference patch tends not to be Zj for any target patch Ẑi, re-
vealing robustness in feature matching. Moreover, in case of
large change in the pose of the objects and an associated tar-
get patch cannot have a match in cI, it can still find a reliable
match in the epitome by (4) with high probability, since each
epitome patch, by its Gaussian mean and variance, summa-
rizes a batch of similar raw patches in cI.

2.5. Colorization by MRF Inference

The target image gI is colorized by inferring the optimal
matching patches in the reference image for all the patches of
the target image. In order to obtain a smooth feature match-
ing, we build a MRF model comprising random variables
X = {xi}Q̂i=1 where each xi corresponds to the patch Ẑi.
The label set for xi (the values xi can take) is all the patches
from the reference image cI, namely Lxi = {Zk}Qk=1. Note
that xi indicates the matching reference patch for the target
patch Ẑi. The energy function defined on the MRF model
admits the following widely-used form comprising the data
likelihood term (or the unary term Edata) and the pairwise
term Esmooth:

E (X) = Edata (X) + Esmooth (X) (5)

Edata (X) =

Q̂∑
i=1

Di (xi) Esmooth (X) =
∑

(i,j)∈N

V (xi,xj)

where N is the set of neighboring variables. Di (xi = Zj)
in the unary term measures the dissimilarity between the tar-
get patch Ẑi and each reference patch Zj for 1 ≤ j ≤ Q,
and we adopt the robust patch dissimilarity measure (3),
i.e. Di (Zj) = De

(
Ẑi,Zj

)
. The pairwise term encourages

neighboring nodes to take similar labels, resulting in a smooth
labeling. V (xi,xj) represents the dissimilarity between two
nodes xi and xj , which is defined below:

V (xi,xj) = Ccol · αcol

∥∥∥xY IQ
i − xY IQ

j

∥∥∥+ Cpos · αpos

∥∥xpos
i − xpos

j

∥∥
(6)

where xY IQ
i and xpos

i indicate the color and the image coor-
dinates of the reference patch xi, αcol and αpos are normaliza-
tion constants which make the color distance and coordinates
distance between xi and xj within [0, 1], and Ccol and Cpos

are weighting parameters.

Fig. 3: Comparison between colorizing the Nano image with MRF
inference (left) or not (right). MRF inference is important for pro-
ducing smooth and consistent colorization results.

Inference in the MRF model is to minimize the energy
function (5), and we adopt the fast graph cut method [13] for
optimization. With the inferred optimal label {x∗

i }, the miss-
ing color channels of gI are recovered by transferring color
from {x∗

i } to the corresponding patches
{
Ẑi

}
. The grayscale

channel of gI is retained as the luminance channel after the
color transfer process. To demonstrate the potential of MRF
inference in rendering a smooth feature matching, we illus-
trate the result of colorizing the Nano mushroom-like images
with and without MRF inference in Figure 3. Note that the
Epitome-MRF model without MRF inference reduces to the
feature matching scheme solely by De in section 2.4.

3. EXPERIMENTAL RESULTS

We present the performance of epitomic image colorization
with comparisons in this section. We learn the heterogeneous
feature epitome of fixed size [Me, Ne, D] throughout the ex-
periments, where D = 12 is the dimension of the heteroge-
neous feature and Me = Ne = 100. The area of the het-
erogeneous feature epitome (Me × Ne) is no more than 1

4
of that of the reference images. The patch size is 9 × 9 or
12 × 12. λcol, λlbp in (2) are set between [0, 1], and we set
(λcol, λlbp) = (0.1, 0.8) for the challenging Nano image, and
use the fixed parameter (λcol, λlbp) = (0.8, 0.1) for all the
other test images. The default setting for Ccol and Cpos in (6)
is (1.0, 0.8).

We compare our method with the existing state-of-the-art
automatic colorization methods, i.e. the color transfer method
by Welsh et al. [3] and the most recent work by Gupta et al.
[4]. Both are the representatives of automatic colorization
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Fig. 4: Comparison with existing state-of-the-art automatic colorization methods by Welsh et al. and Gupta et al. For each row, from left to
right: the heterogeneous feature epitome learned from the reference image, the reference image, the target image, the result by Welsh et al.,
the result by Gupta et al., and our result.

Fig. 5: Comparison between Gupta et al.’s method and our method on colorizing the marked region of the zebra and the cheetah.

methods, and we use the parameter settings suggested by the
authors for both methods.

Figure 1 shows the colorization result for the Nano im-
age containing mushroom-like structures acquired by scan-
ning electron microscopy , where the reference image is col-
orized manually with Photoshop. It is a challenging coloriza-
tion task since there is an “out of focus”effect for the body
of the mushroom-like structures, and the bottom of the mush-
rooms are comprised of two strips of light green and dark
green. Welsh’s method adopts pixel-level matching based
on luminance value and neighborhood statistics, so it suffers
from spatial inconsistency which can be observed around the
top of the mushroom structures. Gupta’s method fails to col-
orize the bottom of the mushrooms correctly since its cas-
cade feature matching scheme is not discriminative enough to
find correct matching superpixels. Our method colorizes the
mushroom-like structures faithfully with minimum artifacts.

Figure 4 compares the colorization results on several in-
ternet images. Welsh’s method generates artifacts around the
boundary of the zebra (the first row), and it colorizes the
cheetah (the second row) with inaccurate pixel-level match-
ing, resulting in a less appealing cheetah than that produced
by Gupta’s method and our method. The poses of the zebra

and the cheetah undergoes large change across the reference
and target image, which makes the cascade feature matching
scheme [4] fail to accurately match all the target superpixels
to the reference superpixels. In contrast, by matching the tar-
get patches to the epitome patches rather than the reference
patches, our robust patch dissimilarity measure can still in-
fer the reliable matching patches in the reference image by
the generalization ability of the heterogeneous feature epit-
ome. Our method also renders more visually appealing re-
sults on the giraffe, sky, trees and hill compared to the other
two methods (the thrid and fourth row of Figure 4). Figure 5
demonstrates that our method produces more accurate feature
matching for colorization.

4. CONCLUSION

We present an automatic colorization method called epitomic
image colorization which transfers color from the reference
color image to the target grayscale image. Our method em-
ploys the heterogeneous feature epitome to define a robust
patch dissimilarity measure, and colorizes the target image by
inference in the MRF model. Experimental results demon-
strates the effectiveness of our method over other automatic
colorization methods.
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