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ABSTRACT

Image guided filtering has been widely used in many image

processing applications. However, it is a local filtering

method and has limited propagation ability. In this paper, we

propose a new image filtering method: nonlocal image guided

averaging (NLGA). Derived from a nonlocal linear model,

the proposed method can utilize the nonlocal similarity of

the guidance image, so that it can propagate nonlocal infor-

mation reliably. Consequently, NLGA can obtain a sharper

filtering results in the edge regions and more smooth results in

the smooth regions. It shows superiority over image guided

filtering in different applications, such as image dehazing,

depth map super-resolution and image denoising.

Index Terms— nonlocal image guided averaging, image

dehazing, depth super-resolution, image denoising

1. INTRODUCTION

In a wide variety of image processing applications, it is

necessary to smooth an image while preserving its edges.

Such edge-preserving smoothing methods have been pro-

posed in recent literatures [1, 2, 3], including bilateral filter,

guided filter.

Bilateral filter compute the weighted average of each

pixels neighboring pixels as its output, where the weights

are calculated according to the intensity/color similarities in

the guidance image. The characteristics of intensity/color

change in a local neighborhood of the guidance image should

be similar to the one of the filter input. For applications such

as Smoothing/HDR compression, the guidance image can be

the filter input itself [1, 2]. For applications such as image

matting/image dehazing, the guidance image can be another

image [2, 3].

Though bilateral filter is popular for its effectiveness, it

may suffer from unwanted gradient reversal artifacts near

edges. To overcome this drawback, He et al. [2] propose a
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new edge-preserving filtering method, image guided filtering.

Derived from a local linear model, the guided filter computes

the linear transformation of the guidance image locally as the

filter output. Sharing with the same edge-preserving property

like bilateral filter, this filter is efficient and does not suffer

from the gradient reversal artifacts. And its direct relation

with matting Laplacian matrix enables it to be used in many

image processing applications, such as image matting and

image dehazing. However, the bilateral filter and guided filter

are indeed local filters, which only utilize the intensity/color

information in a local neighborhood of the guidance image.

In addition, output of these filters may be affected by the tiny

textures in the guidance image.

Image content is likely to repeat itself within some neigh-

borhood. This nonlocal prior has been widely used in many

applications. A. Buades et al. propose a popular image

denoising method, nonlocal means (NLM), based on such a

nonlocal prior [4, 5]. M. Protter et al. generalize the nonlocal

means to super-resolution reconstruction [6]. Recently, P. Lee

and Y. Wu apply the nonlocal prior to resolve image matting

problem, and propose a new matting method, nonlocal mat-

ting [7]. This method can reduce the amount of user effort in

the natural image matting problem.

In this paper, inspired by the work [7], a nonlocal linear

model is presented for deriving a new image filtering method,

nonlocal image guided averaging (NLGA). Though this new

filter shares many similarities with guided filter, it is not the

direct extension of guided filter to nonlocal case. It actually

can be regarded as a two-step filter: i). Linear transforma-

tion, ii). Nonlocal averaging. The linear transformation step

utilizes the structural similarity between patches in the non-

local neighborhood. Therefore, it enables our filter to achieve

better edge-preserving smoothing result. The following non-

local averaging step calculates the weighted average of the

linear transformation results in the nonlocal neighborhood

as the final filter output. It enables our filter to get a more

reliable estimation. This new filter shows superiority over

guided filter in different applications, such as depth map

super-resolution, image dehazing and image denoising.
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2. RELATED WORK

Deriving guided filter starts from the following local linear

model:

qi = ak
T Ii + bk, ∀i ∈ ωk, (1)

where I is the guidance image, q is the filter output, (ak, bk)
are linear coefficients and ωk is the filter window. Then, after

minimizing the difference between the input image p and the

filter output q, the coefficients are obtained. By adopting a

neighborhood averaging strategy, the final filter output can be

formulated as:

qi =
1

|ω|

∑

k:i∈ωk

(

ak
T Ii + bk

)

= ai
T Ii + bi. (2)

Here |ω| is the number of pixels in ωk, which can be computed

as |ω| = (2r + 1)×(2r + 1). r is the radius of ωk . And ai =
1
|ω|

∑

k∈ωi
ak, bi = 1

|ω|

∑

k∈ωi
bk. From simple derivative

calculation, the filter kernel weight can be expressed as:

Wij (I) =
1

|ω|2

∑

k:(i,j)∈ωk

(

1 + (Ii − µk)
T
(Σk + ε)

−1
(Ij − µk)

)

,

(3)

where µk and Σk are the mean vector and covariance matrix

of I in ωk. Such a filter kernel has a direct relation with mat-

ting Laplacian matrix. Consequently, the guided filter can be

used for image matting and haze removal.

As proved in [8], the local linear model is based on the

observation of color line model, which describes the locally

smooth property of foreground and background of natural

image. It constraints the size of local window to be small,

and therefore the guided filter is a local filter. Recently, P. Lee

and Y. Wu generalize the local linear model to be a nonlocal

one based on the nonlocal prior [7]. And they propose a

new matting method, nonlocal matting, which can reduce the

amount of user effort in the natural image matting problem.

3. NONLOCAL IMAGE GUIDED AVERAGING

3.1. Nonlocal linear model

The nonlocal linear model presented in this paper is similar

with the one in [7], and only differs in the weighting matrix.

It can be formulated as:

Qijqj = Qij

(

ai
T Ij + bi

)

, j ∈ N (i) , (4)

where N (i) represents the nonlocal neighborhood of pixel i.

Qij =

√

wij

/

∑

j∈N(i) wij , wij is the nonlocal weight. It

is calculated by measuring the similarity between local patch

I (ωi) centered on pixel i and local patch I (ωj) center on

pixel j [4]:

wij = exp

(

−
1

h2
‖I (ωi)− I (ωj)‖

2
g

)

, (5)

where h is a kernel parameter. ‖·‖g denotes the norm which

is weighted by Gaussian function.

Given an input p and a guidance image I , we can obtain

the linear coefficients (ai, bi) by minimizing the following

error energy function:

E (a, b) =
∑

i∈Λ

E (ai, bi) =
∑

i∈Λ

Edata (ai, bi) + Ereg (ai),

(6)

where Λ is the pixel index set, and

Edata (ai, bi) =
∑

j∈N(i)

wij‖pj − qj‖
2

=
∑

j∈N(i)

(Qijpj −Qijqj)
2

=
∑

j∈N(i)

(

Qijpj −Qij

(

ai
T Ij + bi

))2

, (7)

Ereg (ai) = εa2i = ε
∑

j∈N(i)

(Qijai)
2
. (8)

Thus, obtaining the linear coefficients becomes a weighted

quadratic optimization problem, which can be solved by ap-

plying the first-order condition.

∂E(ai,bi)
∂bi

= 0

⇒ b∗i = pw (N (i))− ai
T Iw (N (i))

, (9)

∂E(ai,b
∗

i )
∂ai

= 0 ⇒ a∗i = (Σi,w + ε)
−1

×
(

∑

j∈N(i)

(wijpj × Ij)− pw (N (i))× Iw (N (i))

)

, (10)

where Iw (N (i)) and Σi,w are the weighted mean vector and

covariance matrix in N (i). Iw (N (i)) =
∑

j∈N(i)

wijIj and

Σi,w =
∑

j∈N(i)

wij

(

Ij − Iw (N (i))
)(

Ij − Iw (N (i))
)T

.

pw (N (i)) =
∑

j∈N(i) wijpj .

3.2. A new filter

After obtaining the linear coefficients (ai, bi) of each nonlocal

patch N (i), we can compute the corresponding linear trans-

formation results. For each pixel pi, since there are several

nonlocal patches containing it, there are several linear trans-

formation results. They can be classified into two kinds as

follows:

pi 7→

{

ai
T Ii + bi

aj
T Ii + bj , j ∈ N (i)

(11)

Analyzing each term E (ai, bi) in the energy function and

the explicit form of (ai, bi) (Eq. (9) and (10)), we can con-

clude that those pixels which have bigger weights make larger

contributions to the regression of (ai, bi). As we know the

nonlocal weight wij reveals the structure similarity between
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the local patch I (ωj) and the central local patch I (ωi), so

(ai, bi) has strong relation with the structure of the central

local patch I (ωi). Thus, for each pixel pi, selecting its linear

transformation result as ai
T Ii+bi, we obtain the linear trans-

formation result for the whole filter input p.

Adopting a weighted averaging strategy in nonlocal

neighborhoodN (i), we calculate the filter output as:

qi =
∑

j∈N(i)
wij

(

aj
T Ij + bj

)

. (12)

Taking the derivative w.r.t. pj , we have the explicit form of

the filter kernel weight:

Wij (I) =
∂qi
∂pj

=
∑

k:(i,j)∈N(k)

wikwkj×

[

1+
(

Ik − Iw (N (k))
)T

(Σk,w + ε)
−1
(

Ij − Iw (N (k))
)

]

(13)

In this paper, we denote this new filtering method as nonlocal

image guided averaging (NLGA).

3.3. Relation with guided filter

As we have indicated before, there are two kinds of linear

transformation results for each pixel. Here, we compute the

weighted average of them as the filter output. Thus we have:

qi =
∑

j∈N(i) wij

(

aj
T Ii + bj

)

=
(

∑

j∈N(i) wijaj

)T

Ii+
∑

j∈N(i) wijbj
. (14)

Taking the derivative w.r.t. pj , we have the explicit form of

the filter kernel weight:

Wij (I) =
∂qi
∂pj

=
∑

k:(i,j)∈N(k)

wikwkj×

[

1+
(

Ii − Iw (N (k))
)T

(Σk,w + ε)
−1
(

Ij − Iw (N (k))
)

]

(15)

Comparing it with the filter kernel weight of guided filter (Eq.

(3)), we can conclude that this filter is the direct extension of

guided filter to nonlocal case. In this paper, we refer this filter

as nonlocal guided filter (NLGF).

Comparing Eq. (12) and Eq. (14), we find that, for smooth

regions where (ai, bi) ≈ (aj , bj) , j ∈ N (i), the output of

NLGA at pixel i becomes:

qi ≈ ai
T
∑

j∈N(i)
wijIj + bi=ai

T Iw (N (i)) + bi. (16)

And the output of NLGF at pixel i becomes:

qi ≈ ai
T Ii + bi. (17)

This difference can be observed obviously in image denoising

applications (Fig. 3). Since the guidance image is the noisy

image itself, NLGA can get a better denoising result for it

involving a nonlocal averaging process.
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Fig. 1. Depth super-resolution results of GF, NLGF and

NLGA. The low-resolution depth map is obtained using

down-sampling factor of 10. (a) The guidance image “Art”.

(b) The ground truth depth map. (c) Nearest neighbor inter-

polation result, PSNR: 22.94dB, SSIM: 0.7653. (d) Result

of GF (r = 20, ε = 10−3), PSNR: 25.64dB, SSIM: 0.8309.

(e) Result of NLGF (r = 20, ε = 10−3), PSNR: 25.92dB,

SSIM: 0.8395. (f) Result of NLGA (r = 20, ε = 10−3),

PSNR: 26.10dB, SSIM: 0.8495. This figure is best viewed in

the electronic version of this paper.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Image dehazing results of GF (r = 20, ε = 10−3),

NLGF and NLGA (r = 20, ε = 10−3). (a) The hazy image.

(e) Raw transmission map [9]. (f)-(h) Filtered transmission

map using GF, NLGF and NLGA respectively. (b)-(d) Re-

covered image using (f)-(h) respectively. This figure is best

viewed in the electronic version of this paper.

Table 1. PSNR(dB) of super-resolution results obtained by

different methods: Nearest Interpolation, GF, NLGF and

NLGA. The down-sampling factor is 10. r = 20, ε = 10−3.

Method Interpolation GF NLGF NLGA

Art 22.94 25.64 25.92 26.10

Books 29.91 30.52 31.31 31.23

Dolls 31.97 33.09 33.87 33.74

Laundry 27.40 29.20 29.50 29.67

Moebius 30.24 31.32 32.67 32.49

Reindeer 24.97 28.97 28.47 28.54
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Image denoising results of GF, NLGF, NLM and

NLGA (r = 10, ε = 0.4 × 202). (a) The original color

test image: “House”. (b) Noisy image with Gaussian noise:

σ=20, PSNR: 22.10dB. (c) Image Guided filtering result,

PSNR: 25.13dB. (d) Result of NLGF, PSNR: 27.32dB. (e)

Result of NLM, PSNR: 31.59dB. (f) Result of NLGA, PSNR:

32.04dB. This figure is best viewed in the electronic version

of this paper.

4. APPLICATIONS AND EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments for

different applications including image dehazing, depth super-

resolution and image denoising to verify the effectiveness of

the proposed filtering method.

Depth Super-resolution In RGBD camera system, one

can get a high-resolution color image and a low-resolution

depth map of a same scene [10]. Therefore, under the

guidance of the color image, super-resolution of the depth

map can be implemented by guided filter and the proposed

filter. Figure 1 shows the super-resolution results of different

filtering methods for depth map “Art” in Middlebury dataset

20051. We can see that NLGF and NLGA can give sharper

results in the edge regions and more smooth results in the

smooth regions than the guided filter, e.g., the regions indi-

cated by the red circle in Fig. 1. This is because that NLGF

and NLGA utilize the structure similarity between patches in

nonlocal neighborhood of the guidance image. The objective

assessment indexes, PSNR and SSIM [11], also convince

that NLGA and NLGF outperform GF significantly. Table 1

shows PSNR of super-resolution results obtained by different

methods.

Image Dehazing In [2], they filtered the raw transmission

map under the guidance of the hazy image using guided filter.

Here, we used NLGF and NLGA to replace the guided filter to

obtain the dehazed image. Figure 2 shows the results. We can

see that the guided filtering result may exhibit some residual

haze near the trunk and ground/braches and wall regions, e.g.,

1http://vision.middlebury.edu/stereo/data/

the regions indicated by the red arrows. Since such regions

are self-similar, the NLGF and NLGA can utilize the simi-

larity information and obtain a clearer result with little haze

residual.

Image Denoising NLGF and NLGA can achieve com-

parable results for above applications. To illustrate their

difference, we conduct a series of experiments on image

denoising. Figure 3 shows the denoising results of GF, non-

local means (NLM), NLGF and NLGA. Guided filter obtains

an over-smoothed result. NLGF gives unsatisfied result with

large amounts of noise residual, especially in the smooth

regions. It verifies the previous analysis of NLGF in Section

3.3. NLGA achieves the best performance, even compared

with nonlocal means. Table 2 shows the denoising results

for five gray test images with Gaussian noise, σ=20, 30. The

PSNR indexes also verify that NLGA has superiority over

GF, NLGF and NLM for image denoising.

Analyzing the explicit form of the proposed filter Eq.

(12) and (ai, bi) (Eq. (9) and (10)), we can find that NLGA

actually involves five nonlocal means processes. When the

guidance image I is the filter input itself p, it reduces to 3.

Thus, the computational cost of NLGA is approximately 3-5

times of nonlocal means filter.

Table 2. PSNR(dB) indexes of denosing results obtained by

GF, NLGF, NLM and NLGA (r = 10, ε = 0.4× σ2).

σ Method Lena Barbara Boats House Peppers average

20

Noisy 22.11 22.12 22.10 22.13 22.11 22.11

GF 24.96 23.08 23.96 24.45 22.08 23.71

NLGF 27.14 26.49 26.66 27.46 26.64 26.88

NLM 30.29 28.79 28.91 30.86 29.02 29.57

NLGA 31.01 29.22 29.31 31.78 29.53 30.17

30

Noisy 18.59 18.60 18.56 18.58 18.63 18.59

GF 24.25 22.69 23.48 23.85 21.69 23.19

NLGF 24.00 23.42 23.64 24.17 23.60 23.77

NLM 27.90 26.37 26.69 28.24 26.58 27.16

NLGA 28.94 26.90 27.33 29.47 27.22 27.97

5. CONCLUSION

In this paper, we propose a new image filtering method, non-

local image guided filtering (NLGA), which is derived from a

nonlocal linear model. Utilizing the nonlocal similarity of the

guidance image, it shows superiority over the guided filter in

different image processing applications, e.g., image dehazing

and depth map super-resolution. In addition, we also present

the direct extension of guided filter to the nonlocal case, non-

local guided filter (NLGF) in this paper. Experimental results

on image denoising verify that the proposed method NLGA

outperforms the guided filter, NLGF and nonlocal means.

The nonlocal propagation capability of NLGA encourages

future research for different applications. As a nonlocal filter,

its computational complexity can be reduced by adopting sim-

ilar techniques developed for nonlocal means.
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