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ABSTRACT

Classical image denoising algorithms based on single noisy images
and generic image databases will soon reach their performance lim-
its. In this paper, we propose to denoise images using targeted exter-
nal image databases. Formulating denoising as an optimal filter de-
sign problem, we utilize the targeted databases to (1) determine the
basis functions of the optimal filter by means of group sparsity; (2)
determine the spectral coefficients of the optimal filter by means of
localized priors. For a variety of scenarios such as text images, mul-
tiview images, and face images, we demonstrate superior denoising
results over existing algorithms.

Index Terms— Patch-based denoising, group sparsity, Bayesian
minimum mean squared error, external database, optimal filter

1. INTRODUCTION

Patch-based image denoising algorithms [1, 2, 3, 4, 5] refer to a class
of recently developed denoising methods based on the concept of
patch similarity. For a

√
n×
√
n patch q ∈ Rn of the noisy image,

a patch-based algorithm finds a set of similar patches p1, . . . ,pk ∈
Rn, and applies some linear (or non-linear) function ϕ to obtain an
estimated (denoised) patch p̂ as

p̂ = ϕ(q; p1, . . . ,pk). (1)

For example, in non-local means, ϕ is a weighted averaging func-
tion [1], whereas in BM3D, ϕ is a transform-shrinkage operation [2].

In applying patch-based denoising algorithms, finding similar
patches p1, . . . ,pk is the key. Typically, there are two sources of
these patches: the noisy image itself and an external database. Find-
ing similar patches from the noisy image itself is more popular be-
cause patches tend to recur within the image [6, 7]. However, this ap-
proach has limited performance, especially for rare patches [8]. An-
other source of obtaining similar patches is to use external databases
[9, 10, 11, 12], which in theory can achieve the minimum mean
squared estimation error [13]. However, most of the existing ex-
ternal denoising algorithms use generic databases, in the sense that
no prior knowledge about the scene is used. This raises a natural
question: are there situations under which targeted databases can be
utilized to improve the denoising quality?

In fact, building targeted databases is plausible in many sce-
narios. As will be illustrated in later parts of this paper, targeted
databases can be built for text images (e.g., newspapers and docu-
ments), human faces (under certain conditions), and images captured
by multi-view camera systems. Other possible scenarios include:
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images of licence plates, medical CT and MRI images, and images
of landmarks.

Assuming that the targeted databases are given, one fundamen-
tal question is: what is the corresponding denoising algorithm? Or
in other words, is it possible to design a computationally efficient
denoising procedure that can maximally utilize the databases? The
goal of this paper is to provide an answer to this question by show-
ing that for the above mentioned applications, an algorithm can be
designed and its performance is better than several existing methods.

1.1. Related Work

The focus of this paper is about denoising algorithms using external
databases. In general, there are two directions in the literature that
are relevant to our work.

The first approach is to modify existing algorithms to handle
external databases by brute-force extensions. For example, one can
modify existing single image denoising algorithms, e.g., [1, 2, 3, 14],
so that they search similar patches from an external database. Simi-
larly, one can treat a database as “videos” for multi-image denoising
algorithms, e.g., [15, 16, 17, 18]. However, both approaches are
heuristic in which there is no theoretical guarantee on the perfor-
mance.

The other approach is to learn the prior of the database and de-
noise the image using a maximum a posteriori (MAP) estimation
method, e.g., [4, 9, 19, 20, 21]. While some of these methods have
performance guarantee, a large number of samples are needed for
training the priors which are not always available in practice.

1.2. Contributions

In contrast to the existing methods, the proposed algorithm requires
only a few targeted images in the database. Moreover, the proposed
algorithm offers two new insights into the denoising problem.

First, we show that when designing a linear denoising filter,
the basis matrix can be learned by solving a convex optimization
involving group sparsity, and the solution is the classical eigen-
decomposition. This provides justifications of many well-known
denoising algorithms in which PCA is used as a learning step.

Second, we show that when estimating the spectral components
of the denoising filter, a localized prior can be used and the denoising
quality is improved by minimizing the associated Bayesian mean
squared error.

The rest of the paper is organized as follows. In Section 2 we
present the problem setup and the proposed algorithm. Experimental
results are shown in Section 3, and a concluding remark is given
in Section 4. Technical details of this paper will be presented in a
follow-up journal paper.
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2. PROPOSED METHOD

We first provide a brief review of the classical optimal denoising
filter design problem and highlight its limitations. Then, we describe
the proposed method and discuss its relation to existing methods.

2.1. Optimal Denoising Filter

We consider the denoising task as an optimal filter design problem
for its simplicity and analytic tractability [22, 23, 24]. Given a clean
patch p ∈ Rn, we model the observed noisy patch as q = p +
n, where n is a vector of i.i.d. Gaussian noise of zero mean and
variance σ2. The optimal denoising filter problem is to find a linear
operator A ∈ Rn×n such that an estimate p̂ can be obtained by
p̂ = Aq. Here, we assume that A is symmetric, or otherwise the
Sinkhorn-Knopp iteration [25] can be used to symmetrizeA.

SinceA is symmetric, it is valid to apply the eigen-decomposition,
A = UΛUT , to obtain the eigenvectors U = [u1, . . . ,un] ∈
Rn×n and the eigenvalues Λ = diag {λ1, . . . , λn} ∈ Rn×n.
Therefore, the filter design problem becomes the question of finding
U and Λ so that the linear estimate p̂ = Aq has the minimum mean
squared error (MSE) compared to p:

(U ,Λ) = argmin
U,Λ

E
[∥∥∥UΛUTq − p

∥∥∥2
2

]
, (2)

subject to the constraint that U is an orthonormal matrix. The opti-
mal solution of (2) yields the following denoising result:

Lemma 1. The denoised patch p̂ using the optimalU and Λ of (2)
is

p̂ = U

(
diag

{
‖p‖2

‖p‖2 + σ2
, 0, . . . , 0

})
UTq,

where U is any orthonormal matrix with the first column u1 =
p/‖p‖.

Evidently, this (trivial) solution is not achievable because it in-
volves the ground truth p. Therefore, many existing methods use
pre-defined bases, e.g. Fourier basis [2] and PCA basis [3, 5], to fix
U in (2). However, the optimality of these bases are not fully under-
stood. Moreover, even if U is pre-defined, an optimal choice of the
spectrum Λ which does not depend on p is yet to be defined. This
motivates the following design procedure.

2.2. Optimal U by Group Sparsity

Determining U is an ill-posed problem because any U satisfying
the orthogonality condition UTU = I is a valid solution. Our pro-
posed method constructs U by exploiting structures of the targeted
database. First, we note that for a given targeted database, the best k
matching patches p1, . . . ,pk must be highly similar. Consequently,
if we consider the matrix P def

=[p1, . . . ,pk], then a good basis U
must be the one that preserves the similarity in the spectral domain.
To this end, we consider the following group sparsity optimization
problem:

minimize
U

‖UTP ‖1,2
subject to UTU = I.

(3)

The `1,2-norm in (3) is a measure of group sparsity that enforces
UTP to have similar magnitudes locating at similar positions. This
notion of group sparsity has been previously used in [4], but towards
a different end. An important yet less known fact about (3) is that
the solution is the eigen-decomposition:

Lemma 2. The solution to (3) is

[U ,S] = eig(PP T ), (4)

where U is the eigenvector matrix, and S is the eigenvalue matrix.

The result of Lemma 2 implies that many existing PCA-based
methods (e.g., [5, 16]) indeed assume a group sparsity prior, al-
though implicitly. If we further define diagonal weight matrices
W 1 ∈ Rn×n andW 2 ∈ Rk×k, and consider the problem

minimize
U

‖UTW
1/2
1 PW

1/2
2 ‖1,2

subject to UTU = I,
(5)

then the solution becomes a generalization of the shape-adaptive
BM3D-PCA [3] where the spatial shape-adaptivity is controlled by
W 1 and the patch intensity similarity is controlled by W 2. In the
rest of this paper, we let W 1 = I for computational simplicity, and
define

W 2 =
1

η
diag

{
e−‖q−p1‖

2/h2

, . . . , e−‖q−pk‖
2/h2

}
, (6)

for some decay parameter h and normalization constant η. Such
choice of W 2 ensures that dissimilar patches have less contribution
in computing U .

2.3. Optimal Λ by Localized Prior

For fixedU , it is not difficult to show that the optimal denoised patch
is

p̂ = U

(
diag

{
(uT1 p)

2

(uT1 p)
2 + σ2

, . . . ,
(uTnp)

2

(uTnp)2 + σ2

})
UTq. (7)

However, since we do not have access to the ground truth p, the

spectral components λi
def
=

(uT
i p)2

(uT
i p)2+σ2 (i = 1, . . . , n) have to be ap-

proximated. For example, in [2, 3], λi is approximated as λi =
(uT

i p)2

(uT
i p)2+σ2 , where p is an initial estimate using a denoising algo-

rithm, e.g., BM3D. However, this type of approximations are subop-
timal because λi is sensitive to the choice of p.

Our proposed method takes into account of the uncertainty of
the initial estimate p when estimating Λ. The idea is to assume a
prior distribution of the patch p and minimize the Bayesian mean
squared error (BMSE) over Λ:

BMSE = Ep

[
Eq|p

[∥∥∥UΛUTq − p
∥∥∥2
2

∣∣∣∣ p]] . (8)

In (8), the conditional distribution f(q | p) is i.i.d. Gaussian, fol-
lowing from the definition of the noise model. Thus, f(q | p) =
N (p, σ2I). The prior distribution f(p) is defined according to the
trustfulness of the k matching patches p1, . . . ,pk. Here, we assume
that the exact expression of f(p) is unknown, but the mean µ and
covariance Σ of f(p) can be reasonably estimated. Consequently,
for a given µ and Σ, the minimum BMSE is achieved at

Λ = argmin
Λ

BMSE =
diag

{
UTΣU +UTµµTU

}
diag

{
UTΣU +UTµµTU

}
+σ2I

,

(9)
where the division is element-wise.
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(a) clean (b) noisy σ = 100 (c) iBM3D (d) EPLL(generic) (e) EPLL(target)
15.54dB (0.6575) 16.12dB (0.7007) 18.21dB (0.8148)

(f) eNLM (g) eBM3D (h) eBM3D-PCA (i) eLPG-PCA (j) ours
20.81dB (0.8636) 20.07dB (0.8376) 21.32dB (0.8611) 20.25dB (0.7670) 21.87dB (0.8639)

Fig. 1: Denoising text images: Visual comparison and objective comparison (PSNR and SSIM in the parenthesis). Prefix “i” stands for
internal denoising (i.e., single image denoising), and prefix “e” stands for external denoising (i.e., using external databases).

It remains to specify µ and Σ. Our choice of µ and Σ is based
on our belief of the true mean of the prior and the associated uncer-
tainty of the belief. To this end, we define

µ =

k∑
i=1

ωipi, Σ =

k∑
i=1

ωi(pi − µ)(pi − µ)
T , (10)

where ωi = 1
η
e−‖q−pi‖

2/h2

is the weight defined in (6). A close in-
spection of (10) suggests that this choice of µ is the non-local mean
solution using the best k patches, and Σ is the covariance of those
patches.

The advantage of the µ and Σ defined in (10) is that they are
computationally very efficient, because of the following lemma.

Lemma 3. Using µ and Σ defined in (10), the optimal Λ defined in
(9) is given by

Λ =
S

S + σ2I
, (11)

where [U ,S] = eig(PW 2P
T ) is the eigen-decomposition of the

weighted matrix PW 1/2
2 .

Therefore, by solving the group sparsity problem (5), we not
only obtain U , but also obtain Λ, automatically. The overall algo-
rithm is given in Algorithm 1.

Algorithm 1 Proposed Algorithm

Input: noisy patch q, and similar patches p1, . . . ,pk
Output: estimate p̂
Learn U and Λ

• Form data matrix P and weight matrixW 2

• Compute eigen-decomposition [U ,S] = eig(PW 2P
T )

• Compute Λ = S
S+σ2I

(element-wise division )

Denoise: p̂ = UΛUTq

It is instructive to compare the proposed Bayesian approach with
existing methods. First, we note that many PCA-based patch denois-
ing algorithms [2, 3, 5, 16] can be generalized under our Bayesian

framework. In those methods, the prior f(p) is a delta function cen-
tered at the initial guess p: f(p) = δ(p−p), whereas in our method,
the prior f(p) has finite covariances.

As a comparison to methods using generic databases such as
[4, 9, 21, 26], our method is a local prior whereas theirs can be con-
sidered as a global prior. Learning a global prior requires a large
number of samples in the training set, which could be difficult be-
cause getting many targeted images is not always possible. Even if
the training sets are sufficiently large, the computing load is still in-
tensive. In contrast, the proposed method assumes a spatially adap-
tive prior f(p) for different patches. As a result, fewer samples are
needed to train the prior.

3. EXPERIMENTAL RESULTS

3.1. Experiment Settings

In this section we evaluate the performance of the proposed method
by comparing to several existing algorithms. The methods we
considered in the comparison include BM3D[2], BM3D-PCA[3],
LPG-PCA[5], NLM[1] and EPLL[4]. Except for EPLL, all other
four methods are re-implemented so that patches can be searched
over multiple images. As for NLM, instead of using all patches in
the database, we consider only the best k patches following [27].
For EPLL, we consider both the default patch prior learned from a
generic database, and a new prior learned from our targeted database
by running the same EM algorithm. To emphasize the difference
between the original algorithms (which are single image denoising
algorithms) and the corresponding new implementations for external
databases, we denote “i” (internal) for the single image denoising
algorithms, and “e” (external) for the corresponding extension for
external databases.

3.2. Denoising Text and Documents

Our first experiment considers denoising a noisy text image (size
161×145) using a collection of 9 arbitrarily chosen text images con-
taining texts of the same font sizes. The purpose of the experiment
is to simulate the case where we want to denoise a noisy document
with the help of other similar but non-identical texts.
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Fig. 1 shows the results of the experiment. We observe that
among all the methods, our proposed method yields the highest
PSNR and SSIM values. Our PSNR is 6dB better than the bench-
mark BM3D (internal) algorithm.

3.3. Denoising Multiview Images

The second experiment considers the scenario of capturing images
using a multiview camera system where one of the views is corrupted
. We add i.i.d. Gaussian noise to one of the five multiview images,
and use the rest of the images to denoise.

Fig. 2 illustrates the denoising results of the “Barn” and “Cone”
multiview datasets, which indicate that our proposed method yields
much better PSNR than BM3D. In Fig. 3 we plot and compare the
PSNR values over a range of noise levels. The proposed method is
consistently better than its counterparts.

(a) noisy (σ = 20) (b) iBM3D, 29.10dB (c) ours, 34.62dB

(d) noisy (σ = 20) (e) iBM3D, 28.77dB (f) ours, 32.26dB

Fig. 2: Multiview image denoising using the proposed method and
internal BM3D. [Top] “Barn”; [Bottom] “Cone”.
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Fig. 3: Multiview image denoising for “Barn”: PSNR vs noise lev-
els. In this plot, each PSNR value is averaged over 8 independent
trials to reduce the bias due to a particular noise realization.

3.4. Denoising Human Faces

The third experiment considers denoising face images using a dataset
from [28]. We simulate the denoising task by adding noise to a ran-
domly chosen image and use other images in the database for de-
noising. The faces are not pre-processed, and so they have different
expressions and alignments. However, even in the presence of this
degree of image variations, the proposed method still performs satis-
factorily over a range of noise levels. The denoised results are shown
in Fig. 4, and the PSNR curves are shown in Fig. 5.

noisy
(σ = 20)

iBM3D
32.00dB

eNLM
32.39dB

eBM3D-PCA
33.06dB

ours
33.31dB

Fig. 4: Face denoising of Gore dataset [28]. [Top] Database images;
[Bottom] Denoising results.
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Fig. 5: Face denoising results: PSNR vs noise level. In this plot,
each PSNR value is averaged over 8 independent trials to reduce the
bias due to a particular noise realization.

4. CONCLUSION

Classical image denoising methods based on single noisy input and
generic databases are approaching their performance limits. We en-
vision that future image denoising should be target-oriented, i.e., for
specific objects to be denoised, only similar images should be used
for training. To address this new paradigm shift in image denoising,
we present algorithms and corresponding simulations of using tar-
geted databases for optimal linear denoising filter design. Our pro-
posed method, based on group sparsity and localized priors, showed
robustness and performance superiority over a wide range of exist-
ing algorithms. Future work includes detailed sensitivity analysis of
the algorithm.
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