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Abstract—Consider the scenario where a receiver acquires
information (data) corrupted by interference and noise. Both
the information and interference have a sparse structure. To
fully exploit the individual sparse structure of the information and
interference, the joint interference mitigation and data recovery
is formulated as a sparse maximum likelihood estimation (MLE)
problem which maximizes the associated likelihood function
under individual sparsity levels (ISLs) constraints. We propose an
alternating optimization (AO) recovery algorithm to solve the non-
convex sparse MLE problem. Under certain restricted isometry
property (RIP) conditions, we show that the proposed AO
algorithm converges to the optimal solution of the sparse MLE
problem. We also derive an upper bound of the corresponding
estimation error for the information. Simulations show that the
proposed solution achieves significant gain over various baselines.

Index Terms—Compressive sensing, Interference mitigation

I. INTRODUCTION

In many applications, a receiver needs to recover infor-
mation (or data) in the presence of both interference and
noise. For example, in cellular systems, a receiver usually
suffers from the intra-cell interference as well as the inter-
cell interference. As a result, interference is a fundamental
bottleneck in wireless systems. In cellular systems, the intra-
cell interference is usually mitigated using various multi-
access techniques [1], and the inter-cell interference is usually
mitigated using frequency reuse techniques [2]. However, in
these interference mitigation techniques, the signal structure
of the interference and information is not exploited. In many
applications, both the interference and information have a
sparse structure. For instance, in cellular systems, there are
usually a few dominating interferences across the entire signal
space seen at a receiver and hence, there is inherit sparsity in
the interference. Moreover, wireless systems are not always
fully loaded. As a result, the information signal usually does
not occupy all the available signal dimensions. Some other ap-
plications involving sparse interference and data can be found
in [3]. Hence, there is a potential advantage of exploiting the
sparse structures of both the interference and information to
design efficient joint interference mitigation and data recovery
schemes.

In this paper, we propose a compressive sensing (CS) based
joint interference mitigation and data recovery framework
which can fully exploit the individual sparse structure of the
information and interference to achieve huge SNR gain over
the existing interference mitigation and data recovery schemes.

This work is funded by RGC614913.

Specifically, we formulate a sparse maximum likelihood es-
timation (MLE) problem which maximizes the likelihood
function [4] under individual sparsity levels (ISLs) constraints.
The optimal solution of this sparse MLE problem is then used
as a “good” estimation of the information.

There are a few CS-based interference cancellation schemes
in the literature. In [3], [5], CS techniques were deployed
to recover a sparse signal from compressed measurements in
the presence of sparse interference. However, the methods in
[3], [5] require that the support of interference is known at
the receiver. The proposed sparse MLE framework does not
require such restrictive assumption and thus can be applied
to more general applications. Moreover, we propose a new
alternating optimization (AO) recovery algorithm to solve the
sparse MLE problem which achieves better performance than
the conventional CS recovery algorithms in [6], [7], [8], [9].
However, there are several first order technical challenges.

• Non-convexity of the Sparse MLE Problem: The sparse
MLE problem is non-convex due to the ISLs constraints.

• Convergence of the AO Algorithm: In each iteration
of the proposed AO algorithm, we need to solve an
information vector optimization subproblem, and an inter-
ference vector optimization subproblem. However, each
subproblem is still non-convex. It is highly non-trivial to
prove the convergence of such AO algorithm [10].

To address the above challenges, we first show that the
conventional CS recovery algorithms such as CoSaMP [8] can
be used to find the optimal solution of the aforementioned
information/interference vector optimization subproblems un-
der some RIP conditions. Based on this, we propose an AO
algorithm with CoSaMP as a building block and show that
this AO algorithm converges to the global optimal solution
of the non-convex sparse MLE problem under certain RIP
conditions. We further derive an upper bound of the error
between the optimal solution found by the AO algorithm and
the true information vector.

Notations: The superscripts (·)T , (·)H and (·)† denote
transpose, Hermitian, and Pseudo inverse respectively. The
notation ◦ denotes the the Hadamard product. Let x(i) denote
the i-th element of a vector x ∈ CN . The l0-norm, l1-
norm and l2-norm of x are respectively denoted by ‖x‖0,
‖x‖1 and ‖x‖2. For a K-sparse vector x with K < N
(i.e., ‖x‖0 = K), let Tx denote the support of x (i.e., Tx
is the index set corresponding to the K non-zero entries of
x). For a given index set T ⊆ {1, ..., N}, let |T | denote its
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cardinality, let T c = {1, ..., N} \T , let x (T ) ∈ C|T | denote
the subvector consisting of the elements of x indexed by the set
T , let x (T c) ∈ C|T c| denote the subvector consisting of the
elements of x indexed by the set T c, and let Φ (T ) ∈ CM×|T |

denote the matrix consisting of the columns of Φ ∈ CM×N

indexed by the set T .

II. SYSTEM MODEL

Consider the following CS model

y = Φx + n =
[

ΦS ΦI

] [ xS

xI

]
+ n, (1)

where x ∈ CN is an unknown signal, Φ ∈ CM×N is
the measurement matrix, y ∈ CM is the received signal,
and n ∈ CM is the noise. The unknown signal x =[
xT
S ,x

T
I

]T
contains two subvectors, namely, the information

vector xS ∈ CNS and the interference vector xI ∈ CNI ,
where NS + NI = N . Correspondingly, the measurement
matrix Φ =

[
ΦS ΦI

]
contains two submatrices, where

ΦS ∈ CM×NS and ΦI ∈ CM×NI . The information vector
xS is KS-sparse (i.e., ‖xS‖0 = KS) and the interference
vector xI ∈ CNI is KI -sparse (i.e., ‖xI‖0 = KI ). The total
sparsity level of x is K = KS + KI . We assume that the
receiver has the knowledge of the measurement matrices ΦS ,
ΦI , and the individual sparsity levels (ISLs) KS and KI of
the information and interference respectively1. The problem is
to recover the sparse information vector xS in the presence of
the sparse interference xI and noise n at the receiver. Note
that the CS model in (1) is different from the conventional
CS model because the information vector and interference
vector have ISLs. As a result, we can exploit this sparse
signal structure with ISLs to design recovery algorithms that
outperform the conventional CS recovery algorithms in [6],
[7], [8], [9]. The above system model covers many interesting
application scenarios in wireless communications [11] and
other fields involving CS signal processing [3], [5].

III. CONVENTIONAL CS RECOVERY: A SPARSE MLE
VIEW

When there is no interference, we have x = xS , Φ = ΦS

and the received signal model in (1) reduces to the conven-
tional CS model. The conventional CS recovery algorithms
such as CoSaMP [8], OMP [7], and subspace pursuit [9] aim at
finding a stable estimation x̂ of x (i.e., ‖x̂− x‖2 ≤ C ‖n‖2 for
some constant C) from M < N compressive measurements
y. For example, for a given CS model y = Φx + n
and sparsity level K, the CoSaMP uses y,Φ,K, η as the
input and calculates an approximation x̂ of x, where η is a
precise parameter. Please refer to [8] for the details of the
CoSaMP algorithm. In order to achieve stable recovery, the
measurement matrix Φ must satisfy certain conditions. One
of the most important conditions is the restricted isometry
property (RIP) introduced by Candes and Tao [12].

1The proposed solution can also be extended to the case when the receiver
does not have the knowledge of KS ,KI as discussed in Remark 2.

Definition 1 (Restricted Isometry Property). The measurement
matrix Φ satisfies the restricted isometry property (RIP) of
order K (K-RIP) with constant δK ∈ (0, 1) if

(1− δK) ‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK) ‖x‖22 . (2)

holds for all x ∈ Σ(N,K) ,
{
z : z ∈ CN , ‖z‖0 ≤ K

}
.

The conventional CS recovery can be interpreted as a
solution to the following sparse MLE problem

PA : min
z
‖Φz− y‖2 , s.t. ‖z‖0 = K. (3)

Specifically, we show that under certain RIP conditions,
CoSaMP is able to find the optimal solution x∗ of PA, despite
that PA is non-convex. Moreover, x∗ is a stable estimation
of x. These results provide a basis for solving the more
complicated joint interference mitigation and data recovery
problem in Section IV.

Theorem 1 (Conditions for the Optimality of CoSaMP).
Suppose that Φ satisfies the 4K-RIP with constant δ4K ≤ 0.1.
Apply CoSaMP with input y,Φ,K, η to obtain x̂ as an ap-
proximation of x. Then x̂ is the unique global optimal solution
of Problem PA if the following conditions are satisfied:

min
j∈Tx

|x (j)| > η + 15 ‖n‖2 . (4)

Moreover, we have Tx̂ = Tx and

‖x̂− x‖2 ≤
2
√

10

3
‖n‖2 , (5)

Proof: By [8, Theorem 4.1], we have ‖x̂− x‖2 ≤
η + 15 ‖n‖2. Suppose Tx 6= Tx̂, then we have ‖x̂− x‖2 ≥
min
j∈Tx

|x (j)|. It follows that min
j∈Tx

|x (j)| ≤ η + 15 ‖n‖2, which

contradicts with the condition in (4). Hence, we must have
Tx = Tx̂ and x̂ = Φ† (Tx) y. Note that the optimal solution
x∗ of PA satisfies ‖Φx∗ − y‖2 ≤ ‖Φx− y‖2 = ‖n‖2.
Then it follows from the triangle inequality and RIP that√

1− δ2K ‖x∗ − x‖2 ≤ ‖Φx∗ − Φx‖2 ≤ 2 ‖n‖2. Using
the fact that δ2K ≤ δ4K = 0.1, we have ‖x∗ − x‖2 ≤
2
√
10
3 ‖n‖2 ≤ η + 15 ‖n‖2. Following similar analysis as for

x̂, we have Tx = Tx∗ and x∗ = Φ† (Tx) y = x̂.

Remark 1. We can obtain similar optimality conditions for
other CS recovery algorithms such as OMP [7] and subspace
pursuit [9]. In this paper, we focus on the design of AO
algorithm with CoSaMP as a basic building block because it
achieves very competitive numerical performance with robust
recovery guarantees and low computation complexity.

IV. JOINT INTERFERENCE MITIGATION AND DATA
RECOVERY

A. Sparse MLE Formulation with ISLs

Since the receiver has the knowledge of the ISLs KS and
KI , we can exploit this side information and formulate the
following sparse MLE problem with ISLs constraints for joint
interference mitigation and data recovery:

PB : min
z
‖Φz− y‖2 , s.t. ‖zS‖0 = KS and ‖zI‖0 = KI , (6)
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where z =
[
zTS , z

T
I

]T
with zS ∈ CNS and zI ∈ CNI . We

show that the optimal solution x∗ of PB is a stable estimation
of x if Φ satisfies the following RIP with ISLs.

Definition 2 (ISLs-RIP). The measurement matrix
Φ satisfies the (NS,I ,KS,I)-RIP2 with constant
δ(NS,I ,KS,I) ∈ (0, 1) if for all x ∈ Σ(NS,I ,KS,I) ,{

z =
[
zTS , z

T
I

]T
: zS ∈ Σ(NS ,KS), zI ∈ Σ(NI ,KI)

}
, we have(

1− δ(NS,I ,KS,I)

)
‖x‖22 ≤ ‖Φx‖22 ≤

(
1 + δ(NS,I ,KS,I)

)
‖x‖22 .

(7)

Theorem 2 (Error Bound for Sparse MLE PB). Sup-
pose that Φ satisfies the (NS,I , 2KS,I)-RIP with constant
δ(NS,I ,2KS,I) ∈ (0, 1). Let x∗ denote any optimal solution of
Problem PB . Then we have

‖x∗ − x‖2 ≤
2√

1− δ(NS,I ,2KS,I)

‖n‖2 . (8)

Moreover, the optimal solution of PB is uniquely given by
x∗ (Tx) = Φ† (Tx) y and x∗ (T c

x) = 0 if

min
j∈Tx

|x (j)| > 2√
1− δ(NS,I ,2KS,I)

‖n‖2 . (9)

The proof is similar to Theorem 1.

B. Alternating Optimization Algorithm to Solve PB

Unlike PA, the existing CS recovery algorithms cannot be
directly used to solve PB . One possible solution is the model-
based CoSaMP proposed in [13]. However, the model-based
CoSaMP cannot fully exploit the benefits due to the side
information of ISLs as will be demonstrated in Section V.

Note that for fixed zS (zI ), PB reduces to PA with
measurement matrix ΦS (ΦI ), which can be efficiently solved
using CoSaMP as discussed in Section III. This motivates us
to propose an alternating optimization (AO) algorithm to solve
PB as summarized below.

Algorithm AO-SMLE (for solving PB):
Initialization: Choose a proper initial3 x

(0)
I . Let i = 1.

Step 1: Let y
(i)
S = y − ΦIx

(i−1)
I . Use CoSaMP with input

y
(i)
S ,ΦS ,KS , η to find an approximate solution x

(i)
S of

P(i)
S : min

zS

∥∥∥y(i)
S −ΦSzS

∥∥∥ , s.t. ‖zS‖0 = KS .

Step 2: Let y
(i)
I = y − ΦSx

(i)
S . Use CoSaMP with input

y
(i)
I ,ΦI ,KI , η to find an approximate solution x

(i)
I of

P(i)
I : min

zI

∥∥∥y(i)
I −ΦIzI

∥∥∥ , s.t. ‖zI‖0 = KI .

Step 3: If i > 1 and
∣∣∣ε(i−1) − ε(i)

∣∣∣ < ε, where ε(i) =∥∥∥ΦSx
(i)
S + ΦIx

(i)
I − y

∥∥∥
2

and ε > 0 is a small number, or if
i > imax, where imax is the maximum allowable number of iterations,

then terminate the algorithm and output x̂ =

[
x
(i∗)
S

x
(i∗)
I

]
, where

i∗ = argmini∈[1,imax] ε
(i). Otherwise, let i = i + 1 and return to

Step 1.

2Note that
(
NS,I ,KS,I

)
is an abbreviation for the four parameters

(NS , NI ,KS ,KI) required to define the ISLs-RIP.
3For example, we can use CoSaMP to generate the initial point.

Under some conditions, Algorithm AO_SMLE converges to
the optimal solution of PB .

Theorem 3 (Conditions for the Optimality of Algorithm
AO-SMLE). Suppose that the following conditions are sat-
isfied.

1) Φ satisfies the (NS,I , 4KS,I)-RIP with constant
δ(NS,I ,4KS,I) ≤ 0.1;

2) min
j∈Tx

|x (j)| > 15
√

1.1
∥∥∥x(0)

I − xI

∥∥∥
2

+ η + 15 ‖n‖2.

Then as i → ∞, Algorithm AO-SMLE monotonically de-
creases ε(i) and converges to a point x̂ that satisfies

‖x̂− x‖2 ≤
2
√

10

3
‖n‖2 .

Moreover, x̂ is the unique optimal solution of Problem PB .

Proof: In Step 1 of the first iteration, the CoSaMP
is applied on the CS model y

(1)
S = ΦSxS + n

(1)
S , where

n
(1)
S = y−ΦIx

(0)
I −ΦSxS = ΦIxI −ΦIx

(0)
I + n. Since Φ

satisfies (NS,I , 4KS,I)-RIP with constant δ(NS,I ,4KS,I) ≤ 0.1,
ΦI must satisfy 4KI -RIP with constant δ4KI

≤ 0.1, from
which it follows that

∥∥∥n(1)
S

∥∥∥
2
≤
∥∥∥ΦIxI −ΦIx

(0)
I

∥∥∥
2
+‖n‖2 ≤

√
1.1
∥∥∥x(0)

I − xI

∥∥∥
2

+ ‖n‖2. From Theorem 1 and condition

2 in Theorem 3, we have T
x
(1)
S

= TxS
and x

(1)
S (TxS

) =

Φ†S (TxS
) y

(1)
S . In Step 2 of the first iteration, the CoSaMP is

applied on the CS model y
(1)
I = ΦIxI + n

(1)
I , where n

(1)
I =

ΦSxS−ΦSx
(1)
S +n. Consider thin SVD ΦS (TxS

) = U4VH ,
where U ∈ CM×KS ,4 ∈ RKS×KS and V ∈ CKS×KS . Using
the fact that ΦS (TxS

) Φ†S (TxS
) = UUH and x

(1)
S (TxS

) =

Φ†S (TxS
) y

(1)
S , it can be shown that n

(1)
I = −UUHn

(0)
I +(

I−UUH
)
n, where n

(0)
I = ΦIxI−ΦIx

(0)
I . Hence, we have∥∥∥n(1)

I

∥∥∥
2
≤
∥∥∥n(0)

I

∥∥∥
2

+ ‖n‖2 ≤
√

1.1
∥∥∥x(0)

I − xI

∥∥∥
2

+ ‖n‖2.
Then from Theorem 1 and condition 2 in Theorem 3, we have
T
x
(1)
I

= TxI
. Similarly, it can be shown that T

x
(i)
S

= TxS
and

T
x
(i)
I

= TxI
for i = 2, 3, .... As a result, AO-SMLE can be

viewed as an AO algorithm for solving the following convex
optimization problem:

min
zS∈CKS ,zI∈CKI

‖ΦS (TxS
) zS + ΦI (TxI

) zI − n‖2 . (10)

According to the AO convergence result in [10], as i → ∞,
AO-SMLE monotonically decreases ε(i) and converges to a
point x̂ such that x̂ (TxS

) , x̂ (TxI
) is the optimal solution of

(10). Since the conditions in Theorem 3 imply the conditions
in Theorem 2, x̂ is also the unique optimal solution of Problem
PB .

Remark 2. In some applications, we may not have the knowl-
edge of KS and KI . However, the CoSaMP can be modified
to solve P(i)

S or P(i)
I without the knowledge of KS and KI .

Please refer to [8], [14] for the details. Hence, by using the
modified CoSaMP algorithms in [8], [14] as the building
block for solving the subproblems P(i)

S or P(i)
I , Algorithm

AO-SMLE can also be generalized to solve PB without the
knowledge of KS and KI .
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Proposed AO−SMLE
BS1: model−based CoSaMP
BS2: L1−min
BS3: LS with Supp.

Figure 1: Recovered SNR versus the interference sparsity level KI

for QPSK modulation. The other simulation parameters are set as
KS = 6, PS = 15dB and PI = 15dB (i.e., SNR= 15dB, SIR=0dB).

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
joint interference mitigation and data recovery algorithm. The
system parameters are chosen as M = 64, NS = 60,
NI = 60. We consider AWGN noise vector n ∼ CN (0, I).
The measurement matrix Φ is assumed to have i.i.d. complex
Gaussian entries of zero mean and variance 1√

M
. Both data

xS and interference xI are generated from a digital modulator.
Two different modulation schemes are considered, namely,
QPSK and 16QAM. Let E

[
|xS (j)|2

]
= PS ,∀j ∈ TxS

and

E
[
|xI (j)|2

]
= PI ,∀j ∈ TxI

respectively denote the data
power and interference power. Similar to [3], [5], we use the
recovered SNR, defined as PS/σ

2
e , as the performance metric,

where σ2
e is the variance of the effective noise after recovery.

We compare the proposed algorithms with the following three
baselines: Baseline 1 (model-based CoSaMP), the Algorithm
1 in [13]; Baseline 2 (L1-min), the well known l1-norm
minimization recovery algorithm [6]; Baseline 3 (LS with
Supp.), the conventional least square recovery algorithm with
the knowledge of the support of x (performance upper bound).

In Fig. 1 to 3, we plot the recovered SNR of different
algorithms versus the interference sparsity level KI under
different combinations of SNR/SIR and modulation schemes.
In all cases, the proposed algorithm AO-SMLE achieves
significant performance gains over baseline 1 (model-based
CoSaMP) and baseline 2 (l1-norm minimization). Moreover,
for small KI , the performance of AO-SMLE approaches the
upper bound achieved by baseline 3. These simulation results
verified that the proposed algorithm has superior performance
compared to the existing CS recovery algorithms under various
system parameters.

VI. CONCLUSION

We propose a sparse MLE framework for joint interference
mitigation and data recovery when both information (data)
and interference are sparse. In this framework, the estimate
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Proposed AO−SMLE
BS1: model−based CoSaMP
BS2: L1−min
BS3: LS with Supp.

Figure 2: Recovered SNR versus the interference sparsity level
KI for QPSK modulation. The other simulation parameters are set
as KS = 6, PS = 20dB and PI = 10dB (i.e., SNR= 20dB,
SIR=10dB).
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Proposed AO−SMLE
BS1: model−based CoSaMP
BS2: L1−min
BS3: LS with Supp.

Figure 3: Recovered SNR versus the interference sparsity level KI

for 16QAM modulation. The other simulation parameters are set as
KS = 6, P = 25dB and PI = 20dB (i.e., SNR= 25dB, SIR=5dB).

of the information is obtained by solving the associated like-
lihood maximization problem under individual sparsity levels
(ISLs) constraints on the information and interference vectors
respectively. The proposed framework can fully exploit the
individual sparse structure of the information and interference
to significantly improve the data recovery performance. We
propose an alternating optimization (AO) algorithm to solve
this non-convex sparse MLE problem and establish the global
convergence conditions. Simulations show that the proposed
algorithm achieves a significant gain over the existing com-
pressive sensing recovery algorithms under various system
parameters.

REFERENCES

[1] A. Jamalipour, T. Wada, and T. Yamazato, “A tutorial on multiple access
technologies for beyond 3G mobile networks,” IEEE Communications
Magazine, vol. 43, no. 2, pp. 110–117, 2005.

2442



[2] R. Ghaffar and R. Knopp, “Fractional frequency reuse and interference
suppression for OFDMA networks,” in Proceedings of the 8th Interna-
tional Symposium on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks, 2010, pp. 273–277.

[3] M. Davenport, P. Boufounos, and R. Baraniuk, “Compressive do-
main interference cancellation,” Proc. Workshop on Signal Processing
with Adaptive Sparse Structured Representation (SPARS), Saint-Malo,
France, 2009.

[4] I. J. Myung, “Tutorial on maximum likelihood estimation,” Journal of
Mathematical Psychology, vol. 47, no. 1, pp. 90–100, Feb. 2003.

[5] L.-H. Chang and J.-Y. Wu, “Compressive-domain interference cancel-
lation via orthogonal projection: How small the restricted isometry
constant of the effective sensing matrix can be?” IEEE WCNC 2012,
pp. 256–261, 2012.

[6] R. Baraniuk, M. A. Davenport, M. F. Duarte, C. Hegde, J. Laska,
M. Sheikh, and W. Yin, “An introduction to compressive sensing,”
2011. [Online]. Available: http://cnx.org/content/col11133/1.5/

[7] J. Tropp and A. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Trans. Info. Theory, vol. 53,
no. 12, pp. 4655–4666, 2007.

[8] D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Computat. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, 2009.

[9] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing
signal reconstruction,” IEEE Trans. Info. Theory, vol. 55, no. 5, pp.
2230–2249, 2009.

[10] L. Grippo and M. Sciandrone, “On the convergence of the block
nonlinear gauss-seidel method under convex constraints,” Operat. Res.
Lett., vol. 26, pp. 127–136, 2000.

[11] A. Gomaa and N. Al-Dhahir, “A sparsity-aware approach for NBI
estimation in MIMO-OFDM,” IEEE Trans. Wireless Commun., vol. 10,
no. 6, pp. 1854–1862, 2011.

[12] E. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans.
Info. Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[13] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based
compressive sensing,” IEEE Trans. Info. Theory, vol. 56, no. 4, pp.
1982–2001, 2010.

[14] H. Wu and S. Wang, “Adaptive sparsity matching pursuit algorithm for
sparse reconstruction,” IEEE Signal Processing Letters, vol. 19, no. 8,
pp. 471–474, 2012.

2443


