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ABSTRACT

Assessing the risk of extreme events in a spatial domain,

such as hurricanes, floods and droughts, presents unique sig-

nificance in practice. Unfortunately, the existing extreme-

value statistical models are typically not feasible for practical

large-scale problems. Graphical models are capable of han-

dling enormous number of variables, yet have not been ex-

plored in the realm of extreme-value analysis. To bridge the

gap, an extreme-value graphical model is introduced in this

paper, i.e., ensemble-of-trees of pairwise copulas (ETPC). In

the proposed graphical model, extreme-value marginal distri-

butions are stitched together by means of pairwise copulas,

which in turn are the building blocks of the ensemble of trees.

By exploiting this particular structure, novel efficient infer-

ence algorithms are derived that are applicable to large-scale

statistical problems involving extreme values. It is proven

that, under mild conditions, the ETPC model exhibits the fa-

vorable property of tail-dependence between an arbitrary pair

of sites (variables), and therefore is reliable to capture the de-

pendence between extremes at different sites. Real data re-

sults further demonstrate the advantages of the ETPC model.

Index Terms— extreme events, pairwise copulas, graph-

ical models, ensemble of trees, tail dependence

1. INTRODUCTION

Extreme events such as hurricanes, earthquakes, and floods

often have a major impact on our society. To assess the like-

lihood of such events, statisticians have developed extreme-

value theory [1]. However, the existing extreme-value mod-

els are often limited to tens of variables while many practical

problems, for instance in Earth Sciences, involve hundreds or

thousands of sites (variables). Although graphical models can

harness such large number of variables [2, 3], they have not

yet been applied to extreme-event analysis. In this paper, we

address this gap by introducing an extreme-value graphical

model, i.e., an ensemble-of-trees of pairwise copulas.

Spatial extremes are often modeled in two stages [4]. First

the marginals of the extreme values at each site are learned.

The marginal parameters are typically coupled in space to

address the issue of inaccurate marginal estimation due to

the lack of extreme-value samples [5, 6, 7]. In the second
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stage, the marginal models are “glued” together via copulas

or max-stable processes. For example, in the approach of [8],

a Gaussian copula connects the marginal distributions to form

a joint distribution. Unfortunately, the resulting dense covari-

ance matrix in the Gaussian latent layer is computationally

prohibitive for high-dimensional data. In [9], the problem is

settled instead by using a Gaussian copula graphical model

with a sparse inverse covariance matrix. A major limitation,

however, is that Gaussian copulas are asymptotically inde-

pendent, rendering them incapable of capturing the tail depen-

dence between extremes. This shortcoming has sparked inter-

est in asymptotically dependent models, including max-stable

processes and extreme-value (max-stable) copulas [10, 11].

However, due to their complexity, only the density functions

of bivariate max-stable processes or copulas are tractable. A

promising strategy is to use bivariate extreme-value copulas

as building blocks to construct large multivariate extreme-

value models. A fruitful step in that direction has been taken

in [10, 11], where composite likelihoods [12] are constructed

from pairwise copulas. There is no principled approach to

impose structure on composite likelihoods, however, posing a

serious drawback. On the other hand, vine copula models [13]

decompose the joint density into a product of pairwise condi-

tional densities and approximate them by pairwise copulas.

Despite its popularity, the complexity of the vine structure in-

creases quadratically with respect to the number of variables,

making it intractable in large scale cases.

In this paper, we introduce an ensemble-of-trees model [14]

of pairwise copulas (ETPC) to deal with high-dimensional

spatial extremes. As a starting point, the sites in the spatial

domain are arranged on a lattice. The probability density

function (PDF) of the ETPC model is a weighted sum the

PDF of all possible spanning trees on that lattice. The PDF of

these trees in turn are constructed from pairwise copulas [15].

In this setting, the extremes can be modeled as asymptoti-

cally tail dependent or independent [16, 17] by choosing the

pairwise copulas appropriately. It can be proven that tail de-

pendence in the ETPC model is preserved if all the pairwise

copulas in the model are tail dependent. We then propose

efficient learning algorithms, and also derive scalable infer-

ence algorithms to impute extreme values at unobserved sites

and to perform conditional simulation. Numerical results for

extreme precipitation data in Japan suggest that the proposed
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ETPC model is suitable for spatial extreme-event analysis.

This paper is structured as follows. In Section 2 we de-

scribe the extreme-value marginal distributions. In Section

3, we explain our proposed ETPC model, which couples the

extreme-value marginal distributions through pairwise cop-

ulas, arranged in an ensemble of trees. Inference methods

for the ETPC model are outlined in Section 4. A theoretical

guarantee on tail dependence of the ETPC model is presented

in Section 5. Numerical results for precipitation data from

Japan are provided in Section 6. Finally, we offer concluding

remarks in Section 7.

2. EXTREME-VALUE MARGINAL DISTRIBUTIONS

Here we briefly review the theory of marginal distributions

of extreme values. In this study, we consider maxima over a

particular time period, e.g., monthly or annual maxima. Sup-

pose that we have N samples x
(n)
i at each of P sites, where

i = 1, · · · , P and n = 1, · · · , N . The extreme value theory

states that the block maxima of i.i.d. univariate samples xi

at each location converge to the three-parameter Generalized

Extreme Value (GEV) distribution with cumulative distribu-

tion function (CDF) [1]:

F (xi) =











exp{−[1 +
ξi
σi

(xi − µi)]
− 1

ξi }, ξi 6= 0

exp{− exp[−
1

σi

(xi − µi)]}, ξi = 0,
(1)

where µi ∈ R, σi > 0, and ξi ∈ R denote the location, scale

and shape parameter, respectively. To improve the accuracy

of the estimated GEV parameters, we couple those parameters

in space by means of a thin-membrane model as in [5, 9].

3. ENSEMBLE-OF-TREES OF PAIRWISE COPULAS

In this section, we proceed to tie the GEV marginal dis-

tributions together by means of statistical copulas, i.e., an

ensemble-of-trees of pairwise copulas (ETPC). To this end,

we first introduce copulas, and then present the ETPC model.

3.1. Copulas

According to Sklar’s Theorem [18], any joint distribution can

be expressed as:

F (x1, . . . , xp) = C(u1, . . . , up), (2)

where the function C is defined to be the copula, Fi is the

marginal CDF of xi, and ui = Fi(xi) follows unit uniform

distributions. Assuming that the partial derivatives exist, the

probability density function can be written as:

f(x1, . . . , xp) = c(F1(x1), . . . , Fp(xp))

p
∏

i=1

fi(xi), (3)

where c is the copula density function [19].

We are primarily concerned with upper tail dependence in

this study which is relevant in the analysis of extremes. This

can be mathematically expressed as:

λU = lim
u→1−

P (U1 > u|U2 > u) = lim
u→1−

1− 2u+ C(u, u)

1− u
,

where λU is the upper tail dependence coefficient, U1 and

U2 are uniformly distributed and C is the copula defined on
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Fig. 1. ET model: the lattice (a) and spanning trees (b) - (e).

U1 and U2. We consider here eight commonly used copulas:

Gaussian, t, Clayton, Frank, Gumbel, Galambos, t-EV, and

Hüsler-Reiss copula [19, 20, 21]. Among them, only Gaus-

sian, Clayton and Frank copulas are not upper-tail dependent.

3.2. From Copulas to Trees and Ensemble-of-Trees

The PDF of a tree graphical model Ti = (V, Ei), as illustrated

in Fig. 1(b) - (e), can then be written as:

f(x|Ti) =
∏

j∈V

fj(xj)
∏

(j,k)∈Ei

fjk(xj , xk)

fj(xj)fk(xk)
(4)

=
∏

j∈V

fj(xj)
∏

(j,k)∈Ei

cjk(Fj(xj), Fk(xk)). (5)

The last expression follows from (3) [15]. Since trees have

limited flexibility in modeling dependence, we construct the

Ensemble-of-Trees of Pairwise Copulas (ETPC) model by

computing the weighted sum over all possible spanning trees

of Fig. 1(a) as follows:

f(x) =
∑

Ti

P (Ti)f(x|Ti), (6)

where P (Ti) = 1/Z
∏

(j,k)∈Ei
βjk is a decomposable prior

proposed by [22]. According to the matrix-tree theorem [22],

the normalizing constantZ =
∑

Ti=(V,Ei)

∏

(j,k)∈Ei
βjk =

det[Q(β)], where β is the edge weight matrix that is sym-

metric with the diagonal entries being zero and with the (j, k)
entry being βjk. In addition, Q(β) denotes the first P−1 rows

and columns of the P ×P Laplacian matrix corresponding to

a graph with edge weight matrix defined by β.

By substituting (5) into (6), the ET model can be suc-

cinctly formulated as [14, 15, 22]:

f(x) =
∑

Ti

1

Z

∏

j∈V

fj(xj)
∏

(j,k)∈Ei

βjkcjk(Fj(xj), Fk(xk))

=
∏

j∈V

fj(xj)
det[Q(β ⊙ c)]

det[Q(β)]
, (7)

where ⊙ denotes componentwise multiplication and c is the

copula density matrix whose (j, k) entry equals cjk.

Since the parameters of the marginal density and of the

copula can be estimated in advance, we only need to infer β.

The resulting optimization problem can be formulated as:

β̂ = argmin
β

N log det[Q(β)]−

N
∑

n=1

log det[Q(β ⊙ c(n))],

s. t. βjk = 0 ∀(j, k) 6∈ E , βjk ≥ 0 ∀(j, k) ∈ E

and ‖U(β)‖2 = 1.

The expression ‖U(β)‖2 is the Euclidean norm for the upper

triangular part of the matrix β. The above problem can be

solved via the projected gradient method [14].
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4. INFERENCE OF MISSING DATA

We now direct our attention to inference. To the best of our

knowledge, no inference methods have been proposed for the

ensemble-of-trees (ET) models [14, 15, 22]. Here we con-

sider the inference problem of imputing missing data. More

explicitly, we aim to infer missing values xM at a set of sites

given observed data xO at other sites. A reasonable approach

is the maximum a posteriori (MAP) estimation:

x̂M = argmax
xM

f(xM |xO) (8)

= argmax
xM

∏

xi∈xM

fi(xi) · det[Q(β ⊙ c(xM ,xO))], (9)

where the notation c(xM ,xO) indicates that the copula den-

sity matrix c is a function of both xM and xO. In most stan-

dard graphical models (e.g., trees), the problem can be sim-

plified as estimating xM given the values of the respective

adjacent nodes [2]. However, for the ET model, such simpli-

fication is not possible as indicated by the following theorem.

Theorem 1. Every pair of variables (xj , xk) in the ensemble

of trees (ET) model corresponding to a connected graph G are

conditionally dependent given other variables in the model.

As such, a plausible alternative is to solve (9). Due to the de-

terminant in the right hand side (RHS) of (9), the maximiza-

tion in (9) is computationally infeasible for high-dimensional

problems. By exploiting the matrix-tree theorem, we can

decompose that determinant into a summation of tractable

terms, reducing the computational complexity significantly.

Let us first consider the scenario where data is missing at

only one node xa, i.e. xM = xa. Without loss of gener-

ality, we consider a lattice GL where each site is connected

to its four nearest neighbors. Consequently, an unobserved

node a has four observed neighbors n, s, e, w as shown in

Fig. 1(a). We now consider the 5-point stencil of a, which is

the subgraph that is made up of a and its four neighbors. We

denote by S the set of all non-empty subgraphs Si of that 5-

point stencil. Each spanning tree of GL contains one or more

subgraphs Si. The spanning trees can be clustered accord-

ing to the largest subgraph Si embedded in them; this leads

to |S| clusters τSi
of spanning trees, each associated with a

subgraph Si, where |S| is the cardinality of S .

As an example, the spanning trees in Fig. 1(b)-(e) are

classified into four different clusters with corresponding sub-

graphs {(a, e)}, {(a, s), (a, n)}, {(a, w), (a, s), (a, n)}, and

{(a, e), (a, w), (a, s), (a, n)} respectively. The matrix-tree

theorem allows us to decompose the determinant in (9) ac-

cording to the |S| subgraphs Si. Following the theorem, we

can regard det[Q(β ⊙ c(xa,xO))] as the sum of the weights

of all the spanning trees in a graph with edge weight matrix

W (xa,xO) = β ⊙ c(xa,xO). As a result, if we define the

weight wSi
of each cluster τSi

as the sum of the weights

of all spanning trees in that cluster, the determinant can be

decomposed as the summation of all the cluster weights wSi
.

Consequently, we can write the posterior marginal f(xa|xO)

as:

f(xa|xO) ∝ fa(xa) det[Q(β ⊙ c(xa,xO))] (10)

= fa(xa)

|S|
∑

i=1

wSi
(xa,xO). (11)

Since all the spanning trees in each cluster τSi
share the sub-

graph Si, its counterpart in wSi
can be factored out, i.e., the

product of pairwise copulas
∏

(a,j)∈Si
caj(Fa(xa), Fj(xj))

corresponding to the edges (a, j) in Si. Only this common

factor varies with xa, and the remaining part is a constant γSi

independent of xa. In summary, the weight wSi
of cluster τSi

can be factorized as:

wSi
(xa,xO) = γSi

∏

(a,j)∈Si

caj(Fa(xa), Fj(xj)). (12)

To determine the constant γSi
, we compute wSi

(xa,xO) for

an arbitrary value x̂a of xa, leading to:

γSi
=

wSi
(x̂a,xO)

∏

(a,j)∈Si
caj(Fa(x̂a), Fj(xj))

. (13)

Once the constants γSi
have been computed, the posterior

marginal f(xa|xO) can be evaluated as:

f(xa|xO) ∝ fa(xa)

|S|
∑

i=1



γSi

∏

(a,j)∈Si

caj(Fa(xa), Fj(xj))



 ,

(14)

which follows from substituting (12) in (11). We will next

elaborate on the calculation of the weights wSi
(xa,xO), re-

quired to compute the constants γSi
(13). Specifically, four

separate cases will be considered, depending on the number

of edges in subgraph Si.

Case 1. The subgraph Si only contains one edge, i.e.,

Si = {(a, j)} for j = n, s, e, or w (see Fig. 1(b)). The cluster

weight equals wSi
(xa,xO) = det[Q(WSi

(xa,xO))] where

the weight matrix WSi
(xa,xO) is obtained from W (xa,xO)

by setting all elements (a, k) and (k, a) with k 6= j to zero.

Case 2. The subgraph Si contains two edges (see

Fig. 1(c)), i.e., Si = {(a, j1), (a, j2)}, j1, j2 ∈ {n, s, e, w},

j1 6= j2. Let us now consider the weight matrix WSi
(xa,xO)

obtained from W (xa,xO) by setting all elements (a, k) and

(k, a) with k 6= j1, j2 equal to zero. The weight matrix

WSi
(xa,xO) corresponds to all spanning trees that do not

contain any of the edges (a, k) with k 6= j1, j2. Those span-

ning trees may contain either (a, j1), (a, j2), or both. As we

are interested in the latter case, we can therefore compute the

desired cluster weight wSi
as follows:

wSi
= det[Q(WSi

(xa,xO))]− w{(a,j1)} − w{(a,j2)}, (15)

where w{(a,j1)} and w{(a,j2)} are the weights for Si =
{(a, j1)} and Si = {(a, j2)} respectively (cf. Case 1).

Case 3. The case where Si comprises three edges (as

shown in Fig. 1(d)) is similar to Case 2, and the problem can

be dealt with in an identical manner.

Case 4. When all edges are present in Si (Fig. 1(e)), wSi

can be computed by noting that the sum of all the weights wSi

equals det[Q(W (xa,xO))].

2436



After decomposing the determinant in (9), the expres-

sion (14) depends on xa in a more transparent manner,

specifically, through products of pairwise copulas. To max-

imize (14) w.r.t. xa, we employ the interior point method

with four starting points, corresponding to the values of xa

that maximize the likelihood of the four pairwise copulas

caj(xa, xj) with j = n, s, e, or w. Our experiments indicate

that this optimization scheme typically results in the global

maximum of f(xa|xO).
In the scenario when there are multiple missing sites, we

employ the Iterative Conditional Mode (ICM) algorithm [24]

in order to decompose the multi-site case into the single-site

case. Typically, the initial estimates for missing sites are set to

the average of the extreme values at the neighboring observed

sites. The experimental results show that the ICM algorithm

converges to a unique maximum.

5. THEORETICAL RESULTS

In this section, we outline our theoretical results on tail de-

pendence. We defer the detailed proof to the journal version

of this work. We begin with a proposition about the tail de-

pendence between two arbitrary nodes in a tree.

Proposition 1. Given a tree graphical model T whose joint

PDF can be written as in (5), the upper tail dependence be-

tween all components of X exists if all the pairwise copulas

cij corresponding to the edges E in the tree are upper tail de-

pendent and Xi and Xj (variables conditionally dependent

in the graph) are stochastically increasing with each other.

Specifically, for any two variables Xi and Xj in the graph, the

lower bound of their tail dependence coefficient is the product

of the tail dependence coefficients of all the pairwise copulas

corresponding to the edges in the path connecting Xi and Xj .

We next generalize the result to the ETPC model by pro-

viding a closed form expression for the lower bound of the

upper tail dependence.

Proposition 2. The upper tail dependence between any two

nodes in the Ensemble-of-Trees model is bounded below by

det[Q(β⊙λ)]/ det[Q(β)] where Q(X) takes the first P − 1
rows and columns of the Laplacian matrix corresponding to

the graph defined by the P × P edge weight matrix X , λ is

the pairwise upper tail dependence coefficient matrix, and ⊙
denotes componentwise multiplication.

Therefore, by properly selecting pairwise copulas, the

ETPC model can flexibly describe the dependencies between

extreme values, both in a tail dependent and independent

manner. Moreover, the ETPC model allows us to simulate ex-

tremal values while preserving tail properties; this is of high

practical value in spatial extremes modeling (e.g. [25, 26]).

6. EXPERIMENTAL RESULTS

To assess our model, we consider the extreme precipitation

in four 10 × 10 regular grids in South Japan, where heavy

rainfall is often the cause of floods [27]. For each of the four

regions, we compare two possible configurations under the

Table 1. Comparison of goodness of fit of two models.

Region No.
ETPC-mixture ETPC-Gaussian

tail independent tail dependent BIC BIC

Region 1 2 178 -5.22×104 -4.76×104

Region 2 0 180 -8.52×104 -6.89×104

Region 3 0 180 -9.82×104 -8.76×104

Region 4 1 179 -5.98×104 -5.44×104

Table 2. The averaged MAE of imputed precipitation val-

ues with respect to the length of the square region of missing

values for 5 quantiles.

Quantile Copula Configuration
MAE (mm)

1×1 2×2 3×3 4×4 5×5 6×6

99th mixture 4.77 7.36 9.00 14.38 16.40 17.36

Gaussian 10.76 12.53 16.47 31.92 39.29 45.89

90th mixture 1.69 9.93 10.50 11.47 14.61 17.96

Gaussian 4.49 11.51 14.50 16.50 22.04 31.26

80th mixture 2.26 8.05 8.65 7.83 7.34 9.08

Gaussian 3.04 6.81 7.32 8.55 11.04 12.84

70th mixture 2.53 3.86 5.26 7.64 6.88 8.82

Gaussian 1.74 3.54 5.15 12.97 15.34 16.11

60th mixture 0.81 1.30 2.62 3.54 4.23 6.03

Gaussian 0.52 1.54 2.33 4.67 9.20 11.47

Ensemble-of-Trees model: 1) the case when all pairwise cop-

ulas are Gaussian (ETPC model with Gaussian copula, de-

noted as “ETPC-Gaussian”) and 2) the case when pairwise

copula selection is performed through the minimization of

the Bayesian Information Criteria (BIC) (ETPC model with

a mixture of copulas, denoted as “ETPC-mixture”). We com-

pute the BIC score of the overall model, and also the mean

absolute error (MAE) between the true and imputed value

over all unobserved sites. For imputation purposes, we re-

tain five samples corresponding to the 99th, 90th, 80th, 70th,
and 60th quantiles of all the total rainfall amounts per event

for the region as the testing data, while the remaining are

treated as training data. For each testing sample, we consider

6 instances in which the data is missing in a 1 × 1, 2 × 2,

3× 3, 4× 4, 5× 5, and 6× 6 area at the center of the 10× 10
grid. We then average the imputation results over the four re-

gions. The numerical results are listed in Table 1 and Table 2.

Apparently, for the ETPC-mixture model, almost all the cho-

sen pairwise copulas have tail dependence. The smaller BIC

score further suggests the use of tail dependent copulas for

modeling spatial extremes. Additionally, the ETPC-mixture

model greatly outperforms the ETPC-Gaussian model when

imputing the missing data of extreme rainfall events with high

quantile (90th quantile and above), probably because Gaus-

sian copulas fail to capture the upper tail dependence in the

data. Moreover, the ETPC-mixture yields a low MAE even in

the case of the largest missing region (6 × 6), indicating that

the proposed model can reliably simulate the extreme events

in a spatial domain given the boundary conditions.

7. CONCLUSION

We have proposed the ETPC model for multivariate analysis

of spatial extremes. Such model is equipped with tractable

and efficient learning and imputation algorithms, while en-

joying the attractive property of preserving the upper tail de-

pendence under certain mild conditions.
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[22] M. Meilǎ, and T. Jaakkola, “Tractable Bayesian learning

of tree belief networks,” Statistics and Computing 16(1):

77-92, 2006.

[23] D. P. Bertsekas, Nonlinear programming, Athena Scien-

tific., 2003.

[24] J. Besag, “On the Statistical Analysis of Dirty Pictures,”

Journal of the Royal Statistics Society B 48(3) , pp. 259-

302, 1986.

[25] J. E. Heffernan, and J. A. Tawn, “A conditional approach

for multivariate extreme value,” J.R. Statist. Soc. B 66, pp.

1-34, 2004.

[26] C. Keef, J. Tawn, and C. Svensson, “Spatial risk assess-

ment for extreme river flows,” J.R. Statist. Soc. C 58(5),

pp. 601-618, 2009.

[27] K. Kamiguchi, O. Arakawa, A. Kitoh, A. Yatagai, A.

Hamada, and N. Yasutomi, “Development of APHRO JP,

the first Japanese high-resolution daily precipitation

product for more than 100 years,” Hydrological Research

Letters 4, pp. 60-64, 2010.

2438


