
SPEECH DECOLORATION BASED ON THE PRODUCT-OF-FILTERS MODEL

Dawen Liang∗, Daniel P. W. Ellis

LabROSA, Dept. of Electrical Engineering
Columbia University

{dliang, dpwe}@ee.columbia.edu

Matthew D. Hoffman, Gautham J. Mysore

Adobe Research
{mathoffm, gmysore}@adobe.com

ABSTRACT

We present a single-channel speech decoloration method
based on a recently proposed generative product-of-filters
(PoF) model. We take a spectral approach and attempt to
learn the magnitude response of the actual coloration filter,
given only the degraded speech signal. Experiments on syn-
thetic data demonstrate that the proposed method effectively
captures both coarse and fine structure of the coloration fil-
ter. On real recordings, we find that simply subtracting the
learned coloration filter from the log-spectra yields promising
decoloration results.

Index Terms— audio, decoloration, Bayesian modeling,
variational inference.

1. INTRODUCTION

Linear distortion effects, such as those caused by recording
in reverberant rooms or using non-transparent equipment, are
a major cause of speech degradation in practice. For exam-
ple, although the human auditory system can easily cope with
moderately reverberant speech, it causes significant perfor-
mance diminution for automatic speech recognition (ASR)
systems [1].

Various techniques have been proposed in the literature
for single-channel speech dereverberation. Reverberation is
commonly modeled as the effect of a linear filter, making it
susceptible to homomorphic filtering approaches (e.g. [2]).
[3] proposes a spectral subtraction based method, which uses
a non-stationary reverberation power spectrum estimator. Ap-
proaches which estimate the inverse filters to cancel the effect
of reverberation have been proposed as well. For example,
[4] leveraged harmonicity assumptions (which are particu-
larly applicable for speech) to design a dereverberation filter.

[5] observes that the distortion caused by room rever-
beration is due to two factors: coloration and long-term
reverberation. In this paper we present a new approach to
speech decoloration1. The technique employs the recently

∗This work was performed in part while Dawen Liang was an intern at
Adobe Research, and was supported in part by NSF project IIS-1117015.

1The term “coloration” can be ambiguous. In this paper, we use it mainly
to refer to short-time effects, e.g. reverberation with a short T60.

proposed Product-of-Filters (PoF) model [6], a generative
model of short-time magnitude spectra.

2. PROPOSED MODEL

2.1. Product-of-filters (PoF) model

We first briefly review the product-of-filters (PoF) model. The
motivation for the PoF model comes from the widely used ho-
momorphic filtering approach to speech signal processing [7],
where a short window of speech w[n] is modeled as a convo-
lution between an excitation signal e[n] and the impulse re-
sponse h[n] of a series of linear filters, which becomes a sim-
ple addition of their log-spectra in the log-spectral domain.

PoF generalizes the concept of the excitation-filter model:
it models a matrix of T magnitude spectra W ∈ RF×T

+

as a product of many filters. PoF assumes that each ob-
served log-spectrum is approximately obtained by linearly
combining elements from a pool of L log-scale filters2

U ≡ [u1|u2| · · · |uL] ∈ RF×L:

logWft ≈
∑
lUflalt, (1)

where alt denotes the activation of filter ul in frame t. Spar-
sity is imposed on the activations to encode the intuition that
not all filters are always active.

Formally, PoF is defined:

alt ∼ Gamma(αl, αl)

Wft ∼ Gamma(γf , γf/ exp(
∑
lUflalt))

(2)

where γf is the frequency-dependent noise level. For l ∈
{1, 2, · · · , L}, αl controls the sparseness of the activations
associated with filter ul; smaller values of αl indicate a prior
preference to use ul less frequently, since the Gamma(αl, αl)
prior places more mass near 0 when αl is smaller. From a
generative point of view, one can view PoF as first drawing
activations atl from a sparse prior, then applying multiplica-
tive gamma noise with expected value 1 to the expected value
exp(

∑
lUflalt).

2When there is no ambiguity, we will simply use “filter” to refer to these
log-scale filters for the rest of the paper.
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Variational inference [8] is adopted to infer the activation
atl, and the free parameters U,α, and γ are chosen to approx-
imately maximize the marginal likelihood p(Wtrain|U,α,γ)
of a set of training spectra. PoF replaces hand-designed de-
compositions built of basic signal processing operations with
a learned decomposition based on statistical inference.

2.2. Decoloration with PoF

Training the PoF model on clean, dry speech will result in
a model that assigns high probability to typical speech; that
is, the trained model will be better able to explain dry speech
than distorted speech. We can leverage this preference for
clean speech to infer the characteristics of linear colorations
that have been applied to dry speech signals.

Coloration is usually modeled as an effect of a linear fil-
ter (e.g., a room impulse response (RIR)) on the signal. The
effect of a linear filter factors out as an addition in the log-
spectral domain, so we can account for any global linear col-
oration in the PoF model by adding an extra coloration filter
and keeping it on (i.e., setting its activation to 1) for the entire
recording. If we hold the pretrained PoF parameters U, α,
and γ constant and tune the new coloration filter to a record-
ing of linearly distorted speech, it is reasonable to suppose
that the model will use the new filter to account for this linear
distortion, allowing the pretrained PoF model to focus on the
phonetic and speaker-level variation in the recording.

Formally, we define the coloration filter h ∈ RF and
modify (2) as follows:

alt ∼ Gamma(αl, αl)

Wft ∼ Gamma
(
γf , γf/ exp(hf +

∑
lUflalt)

)
.

(3)

Under the model,

E[alt] = 1

E[Wft] = exp(hf +
∑
lUflalt).

(4)

A graphical model representation is shown in Figure 1. One
potential problem with this formulation is that this approach
will be limited by the length of the analysis window when
we perform short-time Fourier transform (STFT). This can be
addressed with a convolutive model and will be developed as
future work.

We will learn the coloration filter h given previously un-
seen degraded speech data using a variational Expectation-
Maximization (EM) algorithm, which consists of an “E-step”
and an “M-step.”

2.2.1. E-step

In the E-step, the goal is to approximate the posterior p(at|wt),
which is intractable to compute directly, with a variational
distribution of the form q(at) =

∏
l q(alt) where q(atl) =

Gamma(atl; ν
a
tl, ρ

a
tl). We will tune νat and ρat to minimize

wtat

U,γα

h

T

Fig. 1. Graphical model representation of the PoF-based de-
coloration model. Shaded nodes represent observed variables.
Unshaded nodes represent hidden variables and parameters.
In this model, U, α, and γ are trained from clean, dry speech
and assumed to be fixed.

the Kullback-Leibler (KL) divergence between the variational
distribution q and the posterior p.

Minimizing the KL-divergence is equivalent to maximiz-
ing the following variational lower bound:

log p(wt|U,α,γ,h)

≥ Eq[log p(wt,at|U,α,γ,h)]− Eq[log q(at)]

≡ L(νat ,ρ
a
t ). (5)

For the first term,

Eq[log p(wt,at|U,α,γ,h)]

= Eq[log p(wt|at,U,γ,h)] + Eq[log p(at|α)]

= const−
∑
fγf

(
hf +

∑
lUflEq[alt]

+Wfte
−hf

∏
lEq[exp(−Uflalt)]

)
+
∑
l

(
(αl − 1)Eq[log alt]− αlEq[alt]

)
where Γ(·) is the gamma function. The necessary expecta-
tions Eq[alt] = νalt/ρ

a
lt and Eq[log alt] = ψ(νalt) − log ρalt,

where ψ(·) is the digamma function, are both easy to com-
pute. An expression for Eq[exp(−Uflalt)] follows from the
moment-generating function of a gamma-distributed random
variable:

Eq[exp(−Uflalt)] =
(

1 +
Ufl

ρalt

)−νa
lt

(6)

for Ufl > −ρalt, and +∞ otherwise3.
The second term is the entropy of a gamma-distributed

random variable:

− Eq[log q(at)]

=
∑
l

(
νalt − log ρalt + log Γ(νalt) + (1− νalt)ψ(νalt)

)
. (7)

Closed-form updates for the variational parameters νat
and ρat are not available. We optimize the variational lower
bound via gradient-based numerical optimization (specifi-
cally, limited-memory BFGS). Note that L(νat ,ρ

a
t ) can be

decomposed into T independent terms, and the E-step can
therefore be done in parallel.

3Technically the expectation for Ufl ≤ −ρalt is undefined. Here we treat
it as +∞ so that when Ufl ≤ −ρalt the variational lower bound goes to−∞
and the optimization can be carried out seamlessly.
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(a) The top 3 filters ul with the smallest αl values (shown above each plot).
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(b) The top 3 filters ul with the largest αl values (shown above each plot).

Fig. 2. The representative filters learned from the PoF model with L = 30.

2.2.2. M-step

In the M-step, we find an approximate maximum-likelihood
estimate of the coloration filter h using the expected suffi-
cient statistics for at obtained from the E-step. This is ac-
complished by maximizing the variational objective (5) with
respect to h. Taking the derivative and setting it to 0, we ob-
tain the closed-form update:

hnew
f = log

( 1

T

∑
tWft ·

∏
lEq[exp(−Uflalt)]

)
(8)

Each E-step and M-step increases the objective L, so it-
erating between them is guaranteed to find a stationary point.
In practice, we iterate until the variational lower bound in-
creases by less than 0.01%, which in our experiments typi-
cally takes less than 10 iterations. Once the coloration filter
h is learned, decoloration can be done by subtracting h from
each log-spectrum wt.

3. EXPERIMENTS

To evaluate the effectiveness of the proposed method on de-
coloration, we conducted experiments on both synthetic data
and real recordings.

The proposed model requires pretrained PoF parameters
U, α, and γ, which we learned from 20 randomly selected
speakers (10 males and 10 females) in the TIMIT Speech Cor-
pus. We performed a 1024-point FFT (64 ms) with a Hann
window and 25% overlap. We performed the experiments on
magnitude spectrograms, and set the number of filters used in
the PoF model to L = 30.

To illustrate what the learned filters from PoF look like,
the three filters ul associated with the smallest and largest
values of αl are shown in Figure 2. The filters in Figure 2(a),
which are used relatively rarely and therefore have smaller
values of αl, tend to have the strong harmonic structure dis-
played by the log-spectra of periodic signals, which is con-

sistent with the fact that normally there is not more than one
excitation signal contributing to a speaker’s voice. The filters
in Figure 2(b), which are used relatively frequently and there-
fore have larger values of αl, tend to vary more smoothly,
suggesting that they are being used to model the filtering in-
duced by the vocal tract. This indicates the model has more
freedom to use several of the coarser “vocal tract” filters per
spectrum, which is consistent with the fact that several aspects
of the vocal tract may combine to filter the excitation signal
generated by a speaker’s vocal folds.

It is worth noticing that speaker-specific coloration effects
may bleed into the coloration filter h learned by the proposed
model. We can partially compensate for this by learning an
average speaker coloration filter by fitting the model (3) to the
clean speech data used to learn the PoF model parameters U,
α, and γ. We subtracted this average speaker coloration filter
from the learned filter h in all experiments.

3.1. Synthetic data

We use short-time reverberation as a particular example of
coloration. We selected three different room impulse re-
sponses (RIR) with various T60 from the Aachen impulse
response (AIR) database [9]: studio booth (T60 = 80 ms),
meeting room (T60 = 210 ms), and office (T60 = 370 ms).
We convolved these RIRs with sentences from 6 randomly
selected speakers that do not overlap with the speakers used
to fit the model parameters U, α and γ.

Since the lengths of the RIRs are longer than the analy-
sis window used for the STFT, we cannot directly compare
the learned filters with the magnitude responses of the RIRs.
However, since we are dealing with short-time reverberation,
it is reasonable to assume the difference of the log-spectra be-
tween the reverberant speech and the original clean speech
is roughly consistent across time frames. By taking the av-
erage of the difference, we can obtain an average coloration
which closely approximates the effects of the RIRs. One way
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(a) Studio booth (T60 = 80 ms).
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(b) Meeting room (T60 = 210 ms).
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(b) Office (T60 = 370 ms).

Fig. 3. The comparison between learned coloration filter and
the average coloration (average difference between the log-
spectra of reverberant speech and that of clean speech) under
three different room impulse responses with increasing T60.
We can see that the proposed model effectively recovers the
coloration without the access to the clean speech.

to interpret this average coloration is as the log-magnitude re-
sponse of the filter that, if subtracted from the observed log-
spectra, would minimize the mean squared Euclidean distance
between the colored spectra and the clean spectra. Figure 3
shows the comparison between our learned coloration filter
and the average coloration under the three room impulse re-
sponses. We can see that the proposed model effectively re-
covers the structure of the average coloration.

3.2. Real recordings

We also evaluated the proposed method on real recordings. To
test our method’s ability to correct for coloration from sources
other than reverb, we used the Voice Memos application from
an iPhone 5s to record the same TIMIT sentences used in Sec-
tion 3.1 played from a Macbook Pro (the distance between
the iPhone and the laptop speaker was roughly 30 cm) in a
small room (10 feet by 10 feet). To decolor the recordings,
we applied a zero-phase filter with log-magnitude response
−h, effectively dividing out the impact of the coloration esti-
mated by the PoF model. We compared with two alternative
estimation methods for h: the average coloration (AC) “ora-
cle” filter from the previous section (which cannot be used in
practice), and a simple baseline obtained by computing each
recording’s average magnitude spectrogram and dividing by

Table 1. Average scores across sentences on the speech
enhancement metrics: cepstrum distance (CD), log like-
lihood ratio (LLR), frequency-weighted segmental SNR
(FWSegSNR) and speech-to-reverberation modulation en-
ergy ratio (SRMR). Bold numbers indicate the best scores;
the significance is assessed with a paired Wilcoxon signed-
rank test at α = 0.05 level.

CD LLR FWSegSNR SRMR
Input 5.69 1.64 5.87 4.87

Baseline 4.27 0.50 6.73 4.39
Proposed 3.61 0.50 9.60 6.19

AC 3.69 0.43 7.94 5.46

the average magnitude spectrum from the same speech data
used to fit the PoF model parameters (this baseline uses the
same data as our proposed method).

We evaluated the proposed method under the context
of speech enhancement. We used the metrics from the Re-
verb Challenge4, which include cepstrum distance (CD), log
likelihood ratio (LLR), and frequency-weighted segmental
SNR (FWSegSNR) from [10], and speech-to-reverberation
modulation energy ratio (SRMR) from [11]. The average
scores across sentences are reported in Table 1. For each met-
ric, scores statistically indistinguishable from the best score
are indicated in bold; significance is accessed with a paired
Wilcoxon signed-rank test at α = 0.05 level.

From the results we can see that the proposed model out-
performs the baseline by a large margin except on LLR, where
all three methods perform equally well. Note that under some
metrics, the proposed method even outperforms AC, which
has access to the original clean speech. This may be due to
the PoF’s ability to infer data at frequencies that are missing
from the poorly recorded audio, which was demonstrated in a
bandwidth expansion task from [6].

4. CONCLUSION AND FUTURE WORK

We proposed a single-channel speech decoloration method
based on a generative product-of-filters (PoF) model. By
adding an extra filter, we extend the original PoF model to
learn global coloration effects while retaining PoF’s ability
to capture speech characteristics. Experimental results on
both synthetic data and real recordings demonstrate that the
proposed method accurately estimates coloration filters.

A limitation of our approach is that it can only recover
short-time coloration effects; moving to a convolutive model
would allow us to handle longer reverberation times. Another
goal for the future is to speed up the E-step, possibly by relax-
ing the model so that closed-form updates can be employed
rather than gradient-based optimization.

4http://reverb2014.dereverberation.com
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