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Abstract— A probabilistic approach to 3-dimensional map-
ping is proposed that only uses data gathered by GNSS
(Global Navigation Satellite System) devices. To accomplish
this, the environment is gridded and a physically motivated
sensor model is developed that assigns likelihoods of blockage
to satellite signals based on their measured SNR (signal-to-
noise ratio). It is then shown that the posterior distribution
of the map represents a sparse factor graph on which a low
complexity implementation of Loopy Belief Propagation can be
used for efficient Bayesian estimation. Experimental results are
presented which demonstrate our algorithm’s ability to coarsely
map in three dimensions a corner of a university campus.

I. INTRODUCTION

Reliance on Global Navigation Satellite Systems (GNSS),
such as the Global Positioning System (GPS), has become
ubiquitous with the advent of consumer electronics including
smartphones. While principally serving as navigation aids,
GNSS devices can also be viewed as passive environment
sensors, as follows: 1) When a GNSS receiver traverses
an area, obstacles such as buildings, trees, and terrain fre-
quently block the line-of-sight (LOS) to various satellites,
resulting in “shadowed”, non line-of-sight (NLOS) channels
characterized by statistically lower received signal strength;
2) The same receivers can record the data describing such
shadowing events, including per-satellite azimuth, elevation
and signal-to-noise ratio (SNR), along with the computed
receiver coordinates. It can thus be argued that consumer
GNSS devices represent a vast source of continuously up-
dated mapping data.
Contributions: We provide and experimentally demonstrate
a Bayesian algorithm for building probabilistic 3D maps us-
ing GNSS data as only source of measurements. Specifically,
we show that by discretizing the environment and using
a physically inspired nonlinear sensor model, the posterior
distribution of the map represents a factor graph, on which an
approximate mapping solution can be efficiently computed
using Loopy Belief Propagation (LBP). We evaluate our
algorithm on experimental data gathered using a handheld
device.
Related work: Since GNSS accuracy degrades in cluttered
urban environments, the dual problem to mapping – refining
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position estimates using known environment maps – is more
well researched to date. A technique which has been used
to achieve significant localization improvement is Shadow
Matching (SM) [1]–[3]. Essentially, SM involves classifying
signals as LOS/NLOS and matching their points of reception
to areas outside/inside the “shadows” of signal-blocking
buildings, thereby constraining the space of possible receiver
locations. However, SM relies on up-to-date 3D maps which
are not always available and can be expensive to obtain.

The problem of using GNSS signal strength to construct
environment maps, as is our goal here, has received less
attention. Currently published approaches [4], [5] learn shad-
ows of buildings from GNSS information as in SM, and then
employ non-probabilistic heuristics based on ray tracing to
reconstruct environment maps. To the best of our knowledge,
the present paper is the first to apply a systematic Bayesian
approach to such shadow-based mapping. We believe that
a probabilistic approach is more appropriate in general
due to the large measurement uncertainty involved and the
realization that empty space is more easily identified than
occupied space.

Of course, Bayesian approaches are now standard in
localization and mapping problems [6], with both the envi-
ronment and sensor readings being modeled probabilistically.
However, existing Bayesian algorithms are all based on
implicit or explicit measurements of distances to obstacles,
using a variety of sensing methods such as lidar/radar [7],
[8], mono/stereo camera [9], [10], and WiFi [11]. Our
sensing model is fundamentally different from these: an SNR
measurement for a given satellite only gives us probabilistic
information about whether or not the ray to the satellite is
blocked, which makes the “data association problem” [6]
of associating measurements with map features particularly
challenging. To get around this, we represent the environment
as an Occupancy Grid [12], a volumetric model that – while
less common than feature-based representations – facilitates
data correspondence by quantizing measurement rays, as
illustrated in Figure 1. Unlike traditional Occupancy Grid
mapping, however, we model the grid elements as strongly
dependent using a factor graph [13], which captures the
complex interactions between measurement rays that span
(and thus intertwine) widely separated portions of the map.

In addition to the radically different measurement geom-
etry, there is another key difference between our model and
range-based Bayesian algorithms. Range sensors typically
operate within a local reference frame, and thus provide
readings that are sensitive to pose errors. In the GNSS
mapping problem, global satellite/receiver coordinates (and
hence the measurement beam directions) are known. As a
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Fig. 1. Example occupancy grid illustration together with a SNR mea-
surement scenario. Light/dark grid cells approximate empty/occupied space.
Blue/red lines represent LOS/NLOS signal paths to satellites, with NLOS
signals characterized by statistically lower SNRs.

result, the effects of positioning errors are partially “averaged
out” by using large amounts of measurement data and by
restricting ourselves to coarse grids (map resolutions). This
allows for significant algorithmic simplifications; addressing
the full simultaneous localization and mapping (SLAM)
problem (see [14] for an introduction) is left for future work.

II. THE MAPPING ALGORITHM

A. Bayesian problem formulation

We represent the environment as an Occupancy Grid, a 3D
grid of “map cells” m = {mi}L

i=1 with mi ∈ {0,1} denoting
empty and occupied states respectively. The mapping prob-
lem is then formulated as estimating the occupancy prob-
ability of each cell mi using information logged by GNSS
receivers. The first piece of information is the set of noisy
satellite SNR measurements, which consist of T vectors,
z = {zt}T

t=1, where zt = [zt,1, . . . ,zt,Nt ] contains individual
SNR readings and Nt is the number of satellites in view at
measurement index t. For every reading zt,n the receivers also
provide satellite elevations and azimuths [θt,n,φt,n], which
we consider noiseless. The corresponding receiver position
“fixes” are denoted x = {xt}T

t=1. As previously mentioned, in
this paper we treat these as noiseless as well.

Under the “static world” assumption in which the environ-
ment is modeled as constant over time, the SNR measure-
ments can be modeled as conditionally independent given
the map and poses. Applying Bayes theorem to the posterior
distribution of the map, we then have

p(m|x,z) = p(m)p(z|m,x)
p(z)

∝ p(m)∏
t,n

p(zt,n|xt ,m) (1)

where p(m) is the prior distribution of the map. Although
in this paper we assume the environment is completely
unknown, the algorithm we develop in the upcoming sections
also permits for map priors of the form p(m) = ∏i ψi(mi).

B. SNR measurement model

The measured SNR of a given GNSS signal depends
on a many factors in reality, including satellite elevation,

environmental parameters, and receiver characteristics. While
statistical models exist for the wireless channels of interest
[15], [16], to avoid over-modeling and greatly simplify the
LBP-based inference step, we define the measurement model
as follows:

p(zt,n|xt ,m) =

{
fLOS(zt,n), mi = 0 ∀ i ∈M (t,n)
fNLOS(zt,n), otherwise . (2)

In the above expression, fLOS and fNLOS are the Rice [17] and
log-normal fading distributions, as illustrated in Figure 2, and
M (t,n) indexes the map cells intersected by the ray starting
at receiver position xt in the direction of the transmitting
satellite [θt,n,φt,n]. In other words, an SNR reading is LOS
(Rice) distributed if all cells “observed” by its associated ray
are empty; otherwise, it is NLOS (log-normal) distributed.

SNR (dB) →
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.
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→
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Fig. 2. The LOS/NLOS satellite channels are modeled according to
Rician/log-normal distributions.

Physically, this approach assumes 1) that a LOS signal is
well modeled as a superposition of a dominant LOS compo-
nent and a circular Gaussian (multipath fading) component,
and 2) a NLOS signal is subjected to random, multiplicative
shadow fading. The setting of parameters, such as Ω,K for
the Rice density, is discussed in Section III-A.

C. Inferring the map
The key realization of this paper is that the map posterior

(1) describes a factor graph [13], a bipartite graph with
variable nodes {mi} associated with the map state and
factor nodes { ft,n} corresponding to the SNR likelihoods
{p(zt,n|xt ,m)} (see Figure 3 for an illustration). Importantly,
the graph is sparse due to the sensor model (2): each factor
only depends on (is adjacent to) the relatively small set
of map cells that are intersected by its associated ray. In
addition, the factor graph contains cycles. A well-known
technique that is used for efficient inference on such “loopy”
factor graphs (and used in the context of mapping in [18]) is
the Loopy Belief Propagation (LBP) [19], or Sum-Product
Algorithm [13], an iterative message passing algorithm,
which after convergence (assumed but not guaranteed) yields
estimates of the variables’ marginal posteriors.

1) Inference via reduced complexity LBP: As in standard
LBP and shown in Figure 4, we have two types of messages
passed locally in the factor graph. The message from variable
mi to an adjacent measurement factor ft,n is, for mi defined
on its domain {0,1},

ui→(t,n)(mi) ∝ ψi(mi) ∏
(τ,η)∈F (i)\(t,n)

U(τ,η)→i(mi) , (3)

where F (i) indexes the adjacent factors, ψi(mi) is the
cell prior (uniform in this paper), and the messages are
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(a) Measurement scenario
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Fig. 3. Simplified measurement scenario and its corresponding factor graph,
with circles/squares representing variable/factor nodes. Note that map prior
factors {ψi(mi)} are singly connected to their corresponding {mi} and are
not shown for simplicity.

mi ft,n

ui→(t,n)(mi)

U(t,n)→i(mi)

Fig. 4. Local message passing in Loopy BP and the notation used in this
paper.

normalized to sum to one. In the other direction, employing
the standard Sum-Product formula we have

U(t,n)→i(mi) = ∑
m\mi

p(zt,n|m,xt) ∏
j∈M (t,n)\i

u j→(t,n)(m j) , (4)

where ∑m\mi is the marginalization sum over mi, i.e., a sum
over 2|M (t,n)|−1 terms where |M (t,n)| in the number of
cells observed by the SNR measurement. Because in our
application measurement rays typically intersect tens of map
cells, evaluating (4) directly is impractical. However, upon
substitution of (2), we obtain the simple formula

U(t,n)→i(mi) =


γt,n,i · fLOS(zt,n) +

(1− γt,n,i) · fNLOS(zt,n)
mi = 0

fNLOS(zt,n), mi = 1
(5)

where
γt,n,i = ∏

j∈M (t,n)\i
u j→(t,n)(0) . (6)

Thus, due to the LOS/NLOS measurement model, computing
(4) has been reduced from exponential to linear complexity
in the factor degrees.

After convergence of LBP, the marginal posterior of each
map cell p(mi|x,z) is approximated by its “belief”

bi(mi) ∝ ψi(mi) ∏
(t,n)∈F (i)

U(t,n)→i(mi) (7)

which is normalized to sum to one. In this paper, we
define convergence to be when the average of all belief
residuals Ri falls below a predetermined threshold, where
Ri , |bnew

i (1)−bold
i (1)|.

III. EXPERIMENTS AND RESULTS

Our 3D mapping algorithm was validated on GNSS mea-
surement data taken outdoors from the eastern corner of
the campus of the University of California, Santa Barbara
(UCSB). The device used was a Samsung Galaxy Tablet
2.0 running on the Android operating system supporting
both GPS and GLONASS. The overall data-set consisted of
14 streams of measurements taken over a few days, with
each containing an average of 12 minutes of continuous
measurement data arriving at 1 Hz. Reported satellite SNR
readings ranged in the interval 7−48 dB, and an average of
14 distinct satellites were in view at any point in time.

A. Parameter selection

A grid resolution of 4 m was selected and the map height
was set to 24 m. For the LBP-based inference step, we
used synchronous message passing [20] with a convergence
threshold of 10−3. To limit oscillations and aid convergence,
0.4 message damping was used (see [21] for a detailed
explanation of damping). Referring to Section II-B, the total
received power Ω under the LOS hypothesis was estimated as
the maximum of all linear SNR readings 10zt,n/10 from the
same satellite during the same time window. For simplic-
ity, we used a constant K = 2, indicating moderate fading
conditions. Guided roughly by the results in [15], [22],
the expected received power for NLOS links was set to
18 dB less than the “reference value” Ω, and the standard
deviation was set to 10 dB, reflecting a large variability in
shadowing conditions. Note that, although signals from low
elevation satellites have wider power fluctuations [22], for
simplicity the widths of both LOS/NLOS distributions were
fixed across satellite elevations. However, for the same reason
and much as in [4], a threshold satellite elevation of 10◦ was
chosen, below which SNR measurements were discarded.
When visibility to a particular satellite was temporarily lost
in the middle of an observation window (presumably most
often caused by total occlusion), the satellite coordinates
were interpolated and LOS/NLOS likelihoods of 0.1/0.9
were used.

B. Discussion of results

Altogether, the 14 data-sets comprised of 1.4×105 SNR
measurement rays and 4.6×104 map cells. However, the total
execution time of our algorithm (ray tracing, graph indexing,
LBP) was just under 5 minutes, carried out using MATLAB
on a 64 bit PC with 4 GB of memory and a 2.40 GHz Intel
Core i7-3517U processor.

A horizontal layer (4-8 m) of the resulting map – the
raw LBP output – is compared to an aerial view of the
same area in Figure 5. White and black areas correspond
to estimated occupancy probabilities close to zero and one,
respectively, with shades of grey denoting values in between.
Blue cells are unexplored regions (those not intersected by
any measurement rays). Green borders enclose the region in
which measurements were taken, i.e., surround the feasible
mapping region. The building contours, shown in red, were
obtained from OpenStreetMap. Though the raw map slice

2411



(a) Generated map

(b) Aerial view

Fig. 5. Horizontal slice (4-8 m above ground level) of generated map
compared to Google Maps aerial view of the same area. In the aerial view,
receiver paths from two typical datasets are shown.

in Figure 5 contains errors (some of which are possibly
caused by receiver localization errors), approximate building
locations and several large trees can be clearly identified.

Note that open areas are more easily (and better) mapped
than occupied ones with our sensing model: while every
cell a LOS signal passes through is empty, a NLOS signal
only informs that some occupied cell(s) occluded it. Hence,
if a NLOS ray spans many occupied cells, then each cell
will have a tendency to “blame” (via message passing in
LBP) other occupied ones for the blockage, contributing to
uncertainty. Large obstacles can therefore be expected to
result in “gray zones” with occupancy beliefs around 0.5,
whereas empty space is more easily identified with high
certainty. With this in mind, we expect that thresholding
and/or image segmentation schemes applied to the output of
the LBP algorithm may improve the map. While such post-
processing strategies are beyond the scope of this paper, they
are an important topic for future work.

The 3D mapping capability of our algorithm is demon-
strated in Figure 6, showing the generated map around one
building (Kohn Hall). Although the building in reality is
about 10 m tall, the lingering region of cells above 12 m
(red tinted cells) can be explained by the fact that only
ground-level GNSS measurements were used, so that no
LOS satellite signals glanced the middle part of the building
roof (this is a limitation for any ray-based sensing method).

Nevertheless, it can be concluded from the map data that
Kohn Hall is no taller than 20 m, and for the most part shorter
than 12 m. Separately, we note the empty (transparent) space
surrounding the building that is correctly identified.

Fig. 6. Left: 3D occupancy map around Kohn Hall, with cell transparency
set to emptiness probability (i.e., areas assigned low occupancy probabilities
are transparent), and red tinted cells being those above 12 m. Right:
approximate ground truth based on OSM data.

Finally, we explored the evolution of the map around
another building, Harold Frank Hall, as more data becomes
available in Figure 7. As expected, these results show that
using a larger amount of measurement data improves the
overall quality of the map and especially allows for better
mapping of empty space.

(a) 3 datasets (b) 7 datasets (c) 14 datasets

Fig. 7. Generated maps (4-8 m above ground level) around Harold Frank
Hall as a function of the quantity of measurement data used.

IV. CONCLUSION AND FUTURE WORK

We presented a probabilistic algorithm for mapping using
GNSS SNR. The basic idea of our approach is to grid the
environment, associate GNSS signals with likelihoods of
being occluded, represent the map posterior as a factor graph,
and employ LBP for efficient inference. We then validated
our approach by coarsely mapping an outdoor area using a
real-world dataset of GNSS SNR measurements.

The proposed approach constitutes a first step in a broader
GNSS SNR based mapping and localization effort. As a
next step, we aim to demonstrate the scalability of our
approach by performing large scale mapping experiments and
by using asynchronous LBP (and graph) update strategies.
In addition, we seek to improve mapping and positioning
accuracy through SLAM-like approaches, addressing the
effects of receiver localization error via hybrid LBP/particle
filtering methods.
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