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ABSTRACT

In recent years, efforts have been made in designing
simultaneous-source strategies that permit to save seismic
acquisition costs. Seismic sources are fired with time overlap
producing seismic records that contain a mixture of sources.
These records need to be unmixed before seismic imaging.
The unmixing process can be written as an inverse problem
where one attempts to solve a linear system of equations to
estimate the unmixed seismic data. This article describes a
source separation process where we assume that source in-
terferences can be modelled via an erratic noise process. In
addition, the ideal unmixed data are assumed to be sparse
in the Hyperbolic Radon transform domain. Therefore, the
source separation problem is posed as an inverse problem
where one seeks to retrieve a sparse model from observa-
tions contaminated with erratic (sparse) noise. We present a
modification of the fast iterative shrinkage-thresholding algo-
rithm that permits to cope with the simultaneous estimation
of sparse Radon coefficients that are required to synthesize
the unmixed data. The algorithm is also utilized to estimate
the erratic noise caused by source interferences.

Index Terms— Geophysical signal processing, Radon
Transform, sparsity, simultaneous sources, separation of
sources, inversion

1. INTRODUCTION

In conventional seismic acquisition sources are fired with no
time overlap leading to a common receiver gather similar
to Figure 1(a). In simultaneous source acquisition [1, 2, 3],
sources are fired randomly at time intervals that are shorter
than the total acquisition length of previous sources. This
leads to common receiver gathers that are contaminated by
source interferences. Figure 1(b) is an example of a simul-
taneous source acquisition common receiver gather. Source
separation in this particular case becomes a denoising prob-
lem [4, 5, 6] where one attempts to remove source interfer-
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ences to obtain the ideal gather (Figure 1(a)). Simultaneous
acquisition permits to save acquisition time and therefore, it
permits to decrease the cost of acquiring seismic data. How-
ever, conventional signal processing and imaging techniques
require data that are composed of records that were acquired
with no overlapping of sources.

In this article, we present a method to separate sources
from seismic gathers collected via simultaneous source ac-
quisition. We propose to represent the ideal data via a sparse
Radon synthesis [7] with the inclusion of a noise term that
represent source interferences. The problem is tackled via the
simultaneous solution of a set of sparse Radon coefficients
that represent the data and the sparse erratic noise represent-
ing source interferences. Unlike previous work where the
source separation was posed as an [;-/; problem [8, 9], we
propose to solve an l-l; optimization where sparsity is jointly
imposed on the unknown vectors of Radon coefficients and
source interferences.

Our problem reduces to finding the sparse solution of a
system of equations d = Lm + Su + e where the data d
modelled by the linear operator L acting on coefficients c is
corrupted by erratic noise Su and Gaussian noise e. A similar
model was proposed for robust face recognition in [10, 11,
12]. However, the latter does not contain an additive Gaussian
noise term e.

2. HYPERBOLIC RADON TRANSFORM

We start with a brief description of the Hyperbolic Radon
Transform (HRT) [7, 13]. This is a transform that permits
to model seismic reflections via a superposition of hyperbo-
las. In its basic form, the HRT can be represented via two
operators. First we define the adjoint HRT (often also called
the analysis operator)

Th(T,v):Zd(t:\/TQ—i-i—z,x). ()

We also define the Forward Radon operator given by
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d(t,x):Zm(T:\/TQ—i—z,v) 2)

In these expressions = denotes the source-receiver distance, 7
and v are intercept time and velocity, respectively. The goal
is to estimate the coefficients m(7,v) that honour the data
d(t,x). In our case, the data represents a common receiver
gather. In other words, a collection of time series acquired by
one seismic detector as a result of firing sources at a distance
x from the detector.

To avoid notational clutter we will rewrite the operators in
matrix-times-vector form as follows

m’ = L'd 3)

and

d=Lm, “

where d indicates the data in terms of a vector of length NV x 1.
Similarly, m and m’ are the M x 1 vectors of Radon coef-
ficients of the adjoint and synthesis operators, respectively.
The linear operator L represents the forward Radon operator
(synthesis operator) and L/ its adjoint (analysis operator). Es-
timating m from d involves solving an ill-posed problem. In
addition, one needs to consider that the seismic data are con-
taminated by a noise term e. Therefore, one needs to solve
the problem: d = Lm + e. Assuming Gaussian noise, the
vector of Radon coefficients is estimated via the solution of
the following problem

m = argmin | Lm — d||3 + AR(m) )
m

where R(m) is a regularization term and A the trade-off pa-
rameter of the problem. Equation (5) is often minimized us-
ing iterative methods with sparsity promoting regularization
terms like the /; or the Cauchy norms [7, 14].

3. SPARSE INVERSION OF THE RADON
COEFFICIENTS IN THE PRESENCE OF ERRATIC
NOISE

Simultaneous source acquisition leads to gathers contami-
nated with erratic source interferences [9]. We will consider
that source interferences can be modelled via an erratic noise
term that we will denote Su

d=Lm+ fu-+e. (6)

The latter is rewritten in this form
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Fig. 1. (a) Ideal common receiver gather. Each column cor-
responds to the seismogram obtained by a source at distance
x from the receiver. (b) Common receiver gather obtained via
simultaneous source acquisition.

d=(L B (I:) Te. )

We consider the case where m and u are sparse signals. In
addition, we consider that e is a vector of white noise with
Gaussian distribution. The parameter J is needed to provide
similar scale parameter to the unknown sparse vectors m and
u. In this article 3 is fixed but it is clear that this parameter
should become part of the estimation process.

We propose the joint estimation of m and u via minimiza-
tion of the following cost function (the standard l2-I; prob-
lem) of the form

a = argmin |[Aa — d||2 + A||a]; (8)
where
m
A=(L p1), a:(u>. 9)

Equation (8) is solved via the Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [15]. However, one could
have also adopted the iterative reweighed least-squares (IRLS)
method [16, 17, 18].

Example

Figure 1(a) shows the ideal common receiver gather that one
would have computed using conventional seismic acquisition.
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Figure 1(b) is the gather one obtains by simultaneously firing
40 sources on one receiver. Figure 2(a) displays the [ norm
of the error e (normalized by the noise variance) versus the
tradeoff parameter \. The vertical axis is the y? functional
that is used to estimate the optimal tradeoff parameter A. In
our test to estimate the parameter A we have assumed that the
standard error of the additive noise, o, is known. This is
needed for the y2-test:

2 la - Lmj3

2
Oc

and E[x’]=N.

Figure 2(b) is the Pareto curve representing x? (also the
lo norm normalized by the variance of the noise) versus the [;
norm. The optimum value of \ is chosen such that Y2 = N
where N is the number of observations. In this simulation,
we also fixed the parameter 5 = 5 and run FISTA [15] to
estimate the solution a. The solution a is split in the sparse
Radon panel, m (Figure 3(a)) and the erratic noise interfer-
ences U (Figure 3(b)). The inverted Radon coefficients m
were used to synthesize data free of interferences d = Ln.
The synthesized data are shown in Figure 4(a). Figure 4(b)
shows the reconstruction error panel magnified by 1000. We
also compute the quality of the reconstruction via the follow-
ing expression

||dtrue || )
”dtme - d”
For this particular example () = 43 dB.

Q = 20logy,

4. CONCLUSIONS

We have presented an algorithm for the joint estimation of
a sparse model from data corrupted with Gaussian and im-
pulsive noise. The problem was reduced to the joint estima-
tion of a sparse vector of coefficients and a sparse vector of
noise using the Fast Iterative Shrinkage-Thresholding Algo-
rithm (FISTA). We have applied the algorithm to a synthetic
example pertaining the unmixing of data acquired via a si-
multaneous seismic source acquisition experiment. The algo-
rithm depends on two hyper-parameters A (the trade-off pa-
rameter of the [1-l5 classical mixed norm minimization prob-
lem) and 3, a parameter that is needed to consider scale dif-
ferences in the desired Radon coefficients (m) and erratic in-
terferences (u). The parameter \ was estimated using the y?
test. For our simulations /3 was assumed to be known a priori.
Clearly, a statistical test to estimate [ is also needed.
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