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ABSTRACT 

 
In this paper we consider the problem of reconstructing 

a bandlimited signal from severely aliased multichannel 
samples. Multichannel sampling in this context means that 
the samples are available after the signal has been filtered by 
various linear operators. We propose the method of 
Generalized Matching Pursuit to solve the reconstruction 
problem. We illustrate the potential of the method using 
synthetic data computed for multimeasurement towed-
streamer seismic data acquisition. A remarkable observation 
is that high-fidelity reconstruction is possible even when the 
data are uniformly and coarsely sampled, with the order of 
aliasing significantly exceeding the number of channels. 
 

1. INTRODUCTION 

 
In multichannel sampling, samples of a signal that was 
filtered by various linear operators are available. Suppose 
m(y)=h(y)*s(y), where m(y)=[m1,…,mJ] are the 
measurements, and h(y)=[h1,…,hJ] are the operators. The 
samples are available at points y1,…,yL, which may be 
regularly or irregularly spaced. The objective is to 
reconstruct bandlimited signal s(y) at arbitrary points y. In 
Figure 1, we show a slight generalization, where, for each 
channel j, the measurements are undersampled by a factor of 
Rj with respect to the bandwidth of s. In the spectral domain, 
we have m(ky)=H(ky)s(ky), where ky is the wavenumber 
(spatial frequency). 

 
 Fig. 1. Multichannel sampling. 
 
The generalized sampling expansion proposed by Papoulis 
[1] implies that such a linear system, under certain 
conditions, allows reconstruction of the desired signal when 
Rj=J, j=1,2,…J. However, Papoulis [1] does not provide a 
readily realizable solution for the inversion of the system. 

Later, several articles were proposed to study the properties 
of the generalized sampling expansion, the well-posedness 
of the system, and a closed-form solution of the inverse 
problem [2, 3]. 
In some applications, such as towed streamer marine seismic 
data acquisition, the decimation rate Rj can be significantly 
larger than the number of channels, J.  In this case the order 
of aliasing significantly exceeds the number of channels. In 
the next section, we discuss a method that has shown 
promising performance in this setting. 
 

2. GENERALIZED MATCHING PURSUIT 
 

In this section, we describe a parametric matching pursuit 
method to solve the reconstruction problem that arises in 
multichannel sampling; we call it Generalized Matching 
Pursuit (GMP), as its aim is to reconstruct a signal of which 
no direct samples may be available. Suppose that the 
unknown signal s(y) is modeled as a sum of parametric basis 
functions β(y;θθθθn) with parameter set θθθθn:  

       ( ) ( ; ) .n
n

s y yβ=∑ θ      (1) 

There are various basis functions that can be considered; 
one possibility that is especially convenient for seismic 
applications is 

   ( ),( ; ) exp ,n n y n ny A j k yβ φ = + θ  (2) 

where the parameter set θθθθn consists of amplitude An, 
phase φn, and wavenumber ky,n. The corresponding 
measurements would then be 

   
,( ) ( ) ( ; ) .y n n
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y k yβ=∑m H θ  (3) 

In GMP, the forward linear filters Hj(ky) are applied to 
each basis function; the filtered basis functions are then 
iteratively matched to the multichannel measurements. 
Iteratively, the basis function that, once forward filtered, 
jointly best matches all the input signals is used to 
reconstruct the desired output, with or without the forward 
filter applied. At the N-th iteration, i.e., after N-1 basis 
functions have been determined previously, the residual in 
the measurements is given by 
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If a new term β(y;θθθθN) is added to the existing representation 
of the signal, the updated residual at the positions y becomes 
r

N(y;θθθθN)=r
N-1(y)− H(ky,N) β(y;θθθθN), where the parameters of the 

new term, i.e., θθθθN,  are to be determined by minimizing a 
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metric of the residual calculated over measurement 
locations. One such metric is 

  ( ) ( ) ( )1; ; ,
HN N

N l N l N
l

y yµ − =  ∑θ r θ C r θ  (5) 

where the superscript H represents the Hermitian operator, C 
is a positive definite matrix, and yl represents the sensor 
locations in the y direction. These locations can, in general, 
be irregularly spaced. The role of matrix C is to weight the 
contributions of different measurements to the cost function 
to be minimized. This can take into account the difference of 
energy content due to the different physics of the input 
measurements, as well as the signal-to-noise ratio that can 
vary in time, space, and frequency [10]. 

For basis functions chosen as in (2), it can be shown that 
the optimal AN and φN can be analytically related to the 
residuals rN-1, the input sample positions yl, and the optimal 
wavenumber ky,N. Hence, the only remaining parameter to 
select is 

 ( ) ( ){ }1 1
, arg max ( ), , ( ), .N N

y N N l N l
k

k A y k y kφ− −= r rL  (6) 

We call the objective function L the generalized Lomb 
spectrum, in analogy with the single-channel interpolation 
problem. There, in the case of sinusoidal basis functions, the 
objective function generated by Interpolation by Matching 
Pursuit (IMAP) with optimal amplitudes in the least-squares 
sense corresponds to the Lomb spectrum [4, 5, 6]. The GMP 
iterations can be terminated once the residual energy falls 
below a predetermined fraction of the input energy.  

Next, we illustrate the antialiasing power of GMP for 
uniformly sampled multichannel data with a very simple 
multichannel sampling example. In this example, a single 
sinusoid signal with wavenumber 30 Km-1 is uniformly 
sampled at 25 Km-1. In addition to the signal samples, the 
spatial gradient samples are available at the same locations. 
Due to uniform sampling, there is hard-aliasing, i.e., exact 
periodic replicas in the spectra of each channel. This is a 
reconstruction problem that cannot be solved by 
multichannel sinc interpolation [7], since the order of 
aliasing is greater than two. Figure 2 shows the cost function 
to select the optimum wavenumber (negative of the 
generalized Lomb spectrum) at the first iteration. The aliases 
of the correct wavenumber can be clearly seen. However, 
simultaneous use of the multichannel measurements in the 
optimization process results in the correct wavenumber 
being selected. 

 
3. APPLICATION TO MULTICHANNEL SAMPLING 

 

Due to logistical and cost constraints, marine seismic 
acquisition systems can be deployed to acquire data only 
along a limited number of parallel lines (i.e., towed 
streamers) that are coarsely spaced in the crossline direction.  
 
 

 
 
Streamers are towed typically with crossline spacing of 75-
100 m, resulting in coarse wavefield sampling that contrasts 
with adequate (non-aliasing) wavefield sampling of 6.25 m 
along the streamers (inline). Consequently, they do not 
adequately capture the full spatial bandwidth of the 
subsurface-scattered wavefield, leading to limitations in 
accurate subsurface imaging. Furthermore, conventional 
(pressure-only data) acquisition systems suffer from the 
ghost effect. The ghost is the reflection from the sea surface 
that interferes constructively or destructively with the 
upgoing wavefield (the signal of interest for imaging), 
reducing the seismic bandwidth at the low and high ends of 
the spectrum. To address these critical limitations, a 
multimeasurement marine seismic acquisition platform was 
recently introduced. It is equipped with hydrophones to 
measure the pressure wavefield (P) and accelerometers to 
measure the particle acceleration vector (A). The latter 
represents the spatial gradient of pressure as derived through 
the particle equation of motion, ∇P=−ρA, where ρ is the 
fluid density [8]. 
 
3.1. Reconstructing P from aliased (P, Py) data 

 

An important problem is to reconstruct (interpolate) the total 
pressure wavefield P at any desired position in the crossline 
direction from sparse samples of itself and its crossline 
gradient. P is the sum of the upgoing and downgoing (ghost) 
wavefields. For this problem, the unknown signal is is 
s(f,kx,ky)=P(f,kx,ky); the measurement vector is 

( ) ( )( , , ) , , , , , 1,2, , ,
T

l l y lt x y P t x y P t x y l L = = m L  (7)  

where Py  is the crossline gradient of the pressure wavefield; 
the number of streamers (L) is typically 8-12. The forward 
linear operator is 

( , , ) 1 .
T

x y yf k k jk =  H    (8) 

Here, f is the temporal frequency; kx and ky are the inline and 
crossline wavenumbers, respectively. As the data are well 
sampled in the temporal (t) and inline (x) coordinates, we 
can operate the GMP algorithm outlined in Section 2 for 
fixed values of f and kx.  The particular form that GMP takes 
for this reconstruction problem is referred to as MIMAP 
(Multichannel Interpolation by Matching Pursuit) [9].  

Fig. 2. Cost function for the optimum wavenumber in a hard-aliasing 
problem resulting from insufficient uniform sampling. 
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    Figure 3 shows a simple example reproducing linear 
events with energy up to 65 Hz and various incidence angles 
first decimated at 75 m and then reconstructed using 
different techniques. At every receiver position we modeled 
both the synthetic signal and its horizontal gradient. For the 
selected geometry, an event propagating horizontally 
generates first order alias at 10 Hz, and second order alias at 
20 Hz, as shown in 2(b). Since MIMAP does not assume 
that the data comprise linear events in the implementation 
used for this example, the presence of high orders of aliasing 
presents a significant challenge for reconstruction. 
     To show the antialiasing capabilities of MIMAP, we 
interpolated the data with two standard techniques in 
addition to MIMAP: the sinc interpolation, and the 
multichannel sinc interpolation [7]. In Figure 3(a) we can 
see a region of the input time-space gather describing the 
pressure synthetics, sampled at 75 m, and the frequency-
wavenumber transform of the overall gather. The high order  
aliasing is clearly visible in the f-k domain (Fig. 3(b)). 
Figures 3(c) and 3(d) show the results of the single-
component conventional sinc interpolator, bandlimited in the 
spatial sampling bandwidth. As expected, only frequencies 
up to 10Hz are not aliased, and only the events with small 
incident angle are correctly interpolated (i.e., event at 2.6 s).  
Figures 3(e) and 3(f) show the result of the multichannel 
sinc interpolation, bandlimited to twice the spatial Nyquist. 
In this case, we can see that more events are reconstructed 
correctly in the t-y plot (e.g., events at 2.4s, 2.5s and 2.6s), 
and that all the events are reconstructed correctly up to 20 
Hz. What is also interesting is that the multicomponent sinc 

seems to amplify the aliased events that cannot be 
reconstructed, as visible in the f-k gather above 20 Hz. 
Moreover, the shape of the region not affected by the alias, 
or affected by a first-order alias only, is clearly recognizable 
as the properly reconstructed area. Finally, in Figures 3(g) 
and 3(h), we can observe the results produced by MIMAP, 
and the removal of aliasing up to very high frequencies can 
be appreciated. All the events are well reconstructed. 
 
3.2. Reconstructing P

up
 from aliased (P, Py, Pz) data 

 

Using P, Py, and Pz data that can be recorded by a 
multimeasurement streamer, another and more challenging 
problem would be to reconstruct Pup at any desired position 
without having access to any direct samples of it. This is 
called the joint interpolation and deghosting problem [10], 
where the task of separating the wavefield into its down- and 
upgoing components is performed simultaneously with the 
task of reconstructing it at any desired position. For this 
problem, the unknown signal is s(f,kx,ky)=Pup(f,kx,ky); the 
measurement vector is 

( ) ( ) ( )( , , ) , , , , , , , 1,2, , ,
T

y zt x y P t x y P t x y P t x y l L = = m L (9) 

and the forward linear operator that links the measurements 
to the unknown signal is the ghosting operator defined by 

( ) ( ) ( )2 2 2( , , ) 1 1 1 .z z z
T

j k Z j k Z j k Z
x y y zf k k e k e jk eξ ξ ξ = + + − H    (10) 

    Here, kz is the vertical wavenumber, Z is the depth of the 
streamer, and ξ is the reflection coefficient of the sea 

Fig. 3. Example with simple synthetics: close-up of a region of the t-y domain and f-k transforms of the whole dataset.  (a, b)  Input pressure, sampled at 
75 m; (c, d) reconstruction using a sinc interpolator; (e, f) reconstruction using a multichannel sinc interpolator, also having as input the crossline 
gradients at the samples positions; (g, h) reconstruction with MIMAP, also having as input the crossline gradients at the samples positions. 

(a) (b) (c) (d)

(e) (f) (g) (h)
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surface. Through the ghost model, the Pz component brings 
independent new information on the unknown upgoing 
wavefield, which is crucial for this application [10]. 
      Figure 4 shows the application of GMP to synthetic data. 
The data set was created by finite-difference modeling and 
simulates a 3D survey over a complex geological structure. 
The source signature spectrum is flat up to 30Hz. The 
streamer depth is 50m; the depth was chosen to place the 
pressure ghost notch within the 30Hz bandwidth. Given P, 
Py, and Pz data sampled at 150m and severely aliased, the 
reconstructed upgoing pressure wavefield sampled at the 
desired 25m interval show both the dealiasing and the 
deghosting capabilities of this approach. Figure 4(a) shows 
the f-kx-ky transform of the total pressure wavefield before 
decimation, with pressure sampled over a 25m x 25m spatial 
grid. We can recognize the lack of energy in the low 
wavenumbers in the 15Hz slice, and a circularly shaped 
notch in the 20Hz and 25Hz slices, due to the ghost: events 
not affected by the notch are still affected by the 
constructive interference of the ghost. Figure 4(b) shows the 
f-kx-ky transform of the reference upgoing pressure 
wavefield, sampled over a 25m x 25m spatial grid. The  f-kx-
ky transform of the total pressure wavefield after decimation 
of the data to 150 m in the crossline direction is shown in 
Figure 4(c). Alias starts just above 5 Hz and the order of the 
alias grows with frequency. Figure 4(d) shows the f-kx-ky 

transform of the upgoing pressure wavefield reconstructed 
by GMP, to a 25m x 25m spatial grid. The ghost notch is 
filled and the dealiasing impact of GMP is evident if we 
compare the output shown here with the spectrum of the 
input in the previous. Comparison of Figures 4(b) and 3(d) 
confirms the accuracy of joint interpolation and deghosting 
achieved by GMP.   
 

4. CONCLUSIONS 

 
The problem of reconstructing a bandlimited signal from 
highly aliased multichannel samples was considered and 

Generalized Matching Pursuit 
(GMP) proposed as a solution. 
GMP models the signal as a sum 
of parametric basis functions that 
are matched to the data in a 
simultaneous and iterative fashion 
through application of the 
respective linear operators. Under 
quite general conditions GMP can 
reconstruct signals aliased by 
orders significantly higher than 
the number of measurements, 
including the notoriously difficult 
case of regular undersampling. 
We should emphasize that the 
results shown in this paper were 
obtained without using any priors 

(e.g., constraints from low-frequency to high-frequency), 
which are often utilized to interpolate aliased data: the 
reconstructions were carried out without assumptions on 
events being planar. During the presentation we will show 
real data results, omitted here for lack of space. 
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Fig. 4. Seismic synthetics in the 3D spectrum (f-kx-ky ) domain. (a) reference total pressure wavefield, 
sampled over a 25- x 25-m grid; (b) reference upgoing pressure wavefield, sampled over the same grid; (c) 
input total pressure wavefield at 150-m crossline spacing; (d) upgoing pressure wavefield, reconstructed over 
a 25- x 25-m grid by GMP, processing P, Py, and Pz at 150 m in the crossline. 
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