
STOCHASTIC DATA SWEEPING FOR FAST DNN TRAINING

Wei Deng Yanmin Qian Yuchen Fan Tianfan Fu Kai Yu

Institute of Intelligent Human-Machine Interaction
MOE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
{cosmic phantom, yanminqian, fyc0624, erduo, kai.yu}@sjtu.edu.cn

ABSTRACT

Context-dependent deep neural network (CD-DNN) has been
successfully used in large vocabulary continuous speech
recognition (LVCSR). However the immense computational
cost of the mini-batch based back-propagation (BP) training
has become a major block to utilize massive speech data for
DNN training. Previous works on BP training acceleration
mainly focus on parallelization with multiple GPUs. In this
paper, a novel stochastic data sweeping (SDS) framework is
proposed from a different perspective to speed up DNN train-
ing with a single GPU. Part of the training data is randomly
selected from the whole set and the quantity is gradually re-
duced at each training epoch. SDS utilizes less data in the
entire process and consequently save tremendous training
time. Since SDS works at data level, it is complementary to
parallel training strategies and can be integrated to form a
much faster training framework. Experiments showed that,
combining SDS with asynchronous stochastic gradient de-
scent (ASGD) can achieve almost 3.0 times speed-up on 2
GPUs at no loss of recognition accuracy.

Index Terms— Deep neural network, Speech recogni-
tion, Stochastic Data Sweeping, Asynchronous SGD, GPU

1. INTRODUCTION

Context-dependent deep-neural-network HMM (CD-DNN-
HMM) has achieved dramatic performance improvements
for large-vocabulary continuous speech recognition (LVCSR)
[1, 2]. Here, the traditional Gaussian mixture model (GMM)
is replaced by deep neural network (DNN) to model the
state emission probabilities of HMMs. Training of DNN
consists of two stages: initialization and fine tuning. Various
layer-by-layer initialization approaches, such as unsupervised
deep-belief-network (DBN)[3], can be used. After that, the
back-propagation (BP) [4] based fine-tuning is applied. It has
been observed that immense computational cost is required

This work were supported by the Program for Professor of Special Ap-
pointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and
the China NSFC project No. 61222208.

for DNN training, which becomes a major bottleneck of em-
ploying DNN for massive speech data. Even if GPU is used,
the training process is still very expensive and the demands
on further acceleration is high. In particular, since BP training
is normally required every time new data is incorporated, ac-
celerating BP attracts much interest of researches from both
academia and industry.

BP training of DNN employs the stochastic gradient de-
scent (SGD) approach, which involves a full model update
after error propagation with a mini-batch of data (e.g. only a
few hundred frames). One widely used framework to accel-
erate BP training is multiple-GPU parallelization. Pipelined
back-propagation combining with model striping in the out-
put layer [5] is proposed to reduce the training time by allo-
cating different layers computation on different GPUs in par-
allel. Cluster-based DNN splits the model into independent
sets for parallel training and then merges the result using an
additional NN [6]. Asynchronous stochastic gradient descent
(ASGD) uses multiple GPUs to compute gradients on differ-
ent data using the latest model independently, and updates
the model in the host server asynchronously[7]. All these ap-
proaches use the same architecture of one server with multiple
GPU cards and save tremendous training time without loss of
recognition accuracy.

Although multiple-GPU parallelization approaches can
reduce training time dramatically, they require additional
and expensive hardwares and hence are not feasible for re-
searchers who have limited resources. In this work, a new
framework of DNN training acceleration without facility
enlargement is proposed. The framework relies on data sam-
pling rather than parallelization. It randomly samples a subset
of the whole data set for training at each epoch, where the
sampling data amount is controlled by a data sweeping func-
tion. It is referred to as stochastic data sweeping (SDS). Due
to the reduction in training data amount, the computation cost
is saved naturally. Moreover this framework can be easily
combined with multiple-GPU parallelization. The advan-
tages of both frameworks are additive and much faster DNN
training architecture can be constructed. In this paper, SDS
with a single GPU will first be investigated and then com-

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 240

bined with a multi-GPU parallelization approach, the ASGD
algorithm.

The rest of this paper is organized as follows. Section
2 briefly reviews DNN-HMMs and the SGD algorithm. In
section 3, stochastic data sweeping is described in detail. Ex-
periments as well as analysis are given in section 4. Section 5
concludes the paper and discusses future research directions.

2. DNN TRAINING WITH SGD

In the hybrid DNN-HMM framework, acoustic events are
modelled by a DNN, whose outputs are softmax posterior
probabilities P (s|o) with respect to each HMM state s. The
DNN training process optimizes the cross entropy function

L(θ) = −
∑
s

ds logP (s|o, θ) (1)

where θ is the set of parameters of DNN, ds is 1 for the
target state and 0 for non-target states. During evaluation,
logP (s|o) is calculated and used together with logP (s) to
form the acoustic score log p(o|s).

Once a DNN is initialized, it is fine tuned using the well
known gradient descent based error back-propagation (BP)
algorithm [4]. Stochastic gradient descent (SGD) has proved
to be useful in practice for BP training on large datasets. The
model parameter θ is optimized using

θt+1 = θt − γ∇L(θt) (2)

where L(θ) is the error function as defined in equation (1)
and γ is the learning rate, t denotes the index of a small sub-
set of data, often referred to as mini batch, selected randomly
from the whole training set. From equation (2), full model
parameter θ is updated for each mini-batch. This results in
vast amounts of full DNN parameter updates when sweeping
the whole training data set. The small data size (normal sev-
eral hundred frames in speech recognition) in one mini-batch
and the frequent full model updates in SGD are the main lim-
itations in BP training. Even with GPU, for a LVCSR task
with hundreds or thousands of hours speech data, it can take
several weeks or even months to train a DNN model.

To speed up DNN training, great efforts have been put
on parallelising SGD using multiple-GPUs [5, 6, 7]. They
all aim at parallelised training with the whole training data
set using enhanced hardware facilities. For example, asyn-
chronous SGD (ASGD) users a server-client model, where
multiple client GPUs are used to independently update DNN
models using data within a mini-batch and the updated DNN
are uploaded to server for synchronisation. Although it sig-
nificantly improves training speed, it also requires more hard-
wares such as a server and multiple GPUs.

3. STOCHASTIC DATA SWEEPING

In contrast to SGD parallelization on the whole training data
set, in this section, an alternative novel framework, stochastic
data sweeping is proposed.

The basic idea is to only sweep a randomly selected sub-
set of the training data in each BP training epoch. Although
reducing the amount of training data at each epoch will ob-
viously save the total training time, it may also significantly
degrade the recognition performance. As shown in the ex-
periments, using fixed amount of random selected subsets
throughout the entire BP training process will not yield good
trade-off between saving training time and keeping recog-
nition accuracy. Therefore, dynamic subset selection using
data sweeping function is investigated in this paper.

3.1. Data usage rate of stochastic data sweeping

To evaluate the total amount of training time saving with re-
spect to the standard whole-data training process, data usage
rate (DUR) is defined as the metric:

ri =
1

K

K∑
k=0

si(k) (3)

where i is the type index, k is the epoch index, si(k) denotes
the data sweeping function of type i at the kth training epoch
and K is the total number of epochs for BP training. From
the definitions of the data sweeping functions, DUR is always
between 0 and 1. It reflects the overall computational cost
saving after the entire BP training process.

3.2. Data sweeping functions

Dynamic subset selection is to randomly sample different
amount of data from the whole data set at each training
epoch. General idea is to use larger subsets for early epochs
and smaller subsets for late epochs. Since data are sampled
randomly at each iteration and large portions are used in
early epochs, the hope is that all training data will be ef-
fectively swept and contribute to the training process. The
exact amount of the random data selection at each epoch is
determined using a data sweeping function.

In this paper, three data sweeping functions, represented
by the percentage of the entire training set selected at the nth

epoch, are investigated. These functions are shown in figure
1 and mathematically defined as below:

s0(n) = 1 n ∈ [0,K] (4)
s1(n) = α n ∈ [0,K], α ∈ (0, 1] (5)

s2(n) =

{
1− βn n ∈ [0, l], β ∈ (1

K , 1
l]

c n ∈ [l + 1,K]
(6)

s3(n) =

{
cos(λn) n ∈ [0, l], λ ∈ (π

2K , π
2l]

c n ∈ [l + 1,K]
(7)

241

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

 Iterations

 D
at

a
U

sa
ge

(%
)

 s0(baseline)

 s1

 s2

 s3

Fig. 1: Different data sweeping functions

where si(n) denotes the data sweeping function at epoch n of
type i, K is the total number of epochs, α, β, λ are deweight-
ing factors, c is the smallest percentage of the training data
that is used in SDS. Hence the parameter α, β, λ, and c, l
control the sampled data quantity which consequently decide
the overall training time. It is also possible to set the DUR first
and then given c and l, determine the parameters α, β, λ. This
back-calculation is useful for performing experiments and is
used in this paper.

From the definition and figure 1, s0 indicates the normal
training method that uses the whole data set, and s1 randomly
selects samples at a fixed percentage throughout the entire BP
training process. In contrast, s2 and s3 make the percentage
variable according to individual epoch, and at early epochs
the sampled data quantity is relative large and the amount
gradually decreases in later epochs. It has been known that
at early BP training stages, the learning rate is usually large
and the model parameters change greatly. So the early epochs
are relatively more crucial and more data is helpful for guid-
ing DNN training towards the correct direction. While in the
later epochs, the model is more stable and learns slowly, so
more training data may be able to be reduced. s2 and s3 are
designed to reflect this motivation.

4. EXPERIMENTS

Effect of data usage rate and learning rate during BP were first
investigated under the stochastic data sweeping (SDS) frame-
work on a 50-hour switchboard English dataset for fast ex-
periments. SDS was then applied to two large LVCSR tasks,
a 309-hour switchboard English task and a 250-hour Man-
darin ASR task. Combination of SDS with asynchronous
SGD (ASGD) was also tested on the two LVCSR tasks.

4.1. Effect of data usage rate and learning rate

In this experiment, 810 speakers out of 4869 speakers from
the 309 hours data of the switchboard data[8] set were first
randomly selected, which forms a small training set of about
50 hours for fast experimental investigation. PLP features

normalised by per-speaker mean and variance, along with 1st

and 2nd derivatives were used as the raw features. Cross-word
triphone models with 3001 tied-states was used. State align-
ment for DNN training was generated using a GMM model.
A trigram language model which was trained on the transcrip-
tion of the 2000h Fisher corpus and interpolated with a back-
ground trigram model was used for decoding. The switch-
board (swb) part of the Hub5’00 data set and the fisher (csh)
part of the RT03S data set were used as the test set in this pa-
per, which is the same as [9]. All DNNs have 7 hidden layers
with 2048 nodes per layer. The RBM-pretrained DNN was
fine tuned with cross-entropy objective function, along with a
L2-norm weight-dacay term of coefficient 10−6.

20 30 40 50 60 70 80 90 100
25

26

27

28

29

30

31

 Data Usage(%)

 W
E

R
(%

)

s1−swb

s2−swb

s3−swb

s1−fsh

s2−fsh

s3−fsh

Fig. 2: The relationship between performance and data usage
rate of 3 data sweeping functions

As indicated in the previous section, it is possible to tune
the parameters of the data sweeping function to achieve cer-
tain level of overall data usage rate (DUR). The word error
rates (WER) of the three data sweeping functions with dif-
ferent DUR are shown in figure 2. From the figure, keeping
fixed data sweeping rate (i.e. s1) yielded notable performance
degradation when DUR is less than 77%, which is not effec-
tive. In contrast, using non-linear data sweeping functions in
SDS resulted in better trade-off between WER and DUR. s3
with DUR of 55% showed the best trade-off and will used for
later experiments.

In the experiments, a learning rate annealing and early
stopping strategies as in [10] was used1. The learning rate γ
is dynamically tuned for different epochs during BP training
using the below formula

γ(n) =

{
T n ∈ [0, l]
τn−lT n ∈ [l + 1,K]

(8)

where T is the initial learning rate, K is the total number of
epochs, l is the epoch index when the CV accuracy increase is
smaller than a pre-defined threshold, τ is the decaying rate. It
is then interesting to investigate effect of learning rate change
on stochastic data sweeping.

1Note that in this paper, for fair comparison, the maximum number of
iteration is limited to 16.

242

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
25

26

27

28

29

 Initial Learning Rate

 W
E

R
(%

)

baseline−swb s3−swb baseline−fsh s3−fsh

(a) Performance of stochastic data sweeping (s3) with different ini-
tial learning rates

0.55 0.6 0.65 0.7 0.75 0.8 0.85
25

26

27

28

29

 Learning Rate Decay

 W
E

R
(%

)

baseline−swb s3−swb baseline−fsh s3−fsh

(b) Performance of stochastic data sweeping (s3) with fixed initial
learning rate of 1.5 and different decaying factors.

Fig. 3: Performance of stochastic data sweeping (s3) with
different initial learning rates and decaying factors.

The performance comparison between the SDS and the
baseline DNN using different initial learning rates T and de-
caying factors τ are shown in figure 3. It can be observed that
the degradation from baseline is relatively smaller for large
initial learning rate and decaying factor. This may be be-
cause SDS essentially uses different data at each epoch and
the amount is smaller than the standard full training, so rel-
atively larger learning rate and decaying factor may help to
tune the model to cover more varieties. Considering the over-
all performance, learning rate of 1.5 and decaying factor of
0.7 are used for later experiments.

4.2. Combination with ASGD

To further demonstrate the effectiveness of stochastic data
sweeping (SDS), it was applied to the full 309 hours En-
glish Switchboard data set and a 250 hours Mandarin LVCSR
task. The Mandarin data were collected through mobile mi-
crophone under the real environment in a spontaneous style.
Two test sets, referred to as man1 and man2, were used. The
man1 has 2 hours and man2 has 1 hour data. All the training
process on Mandarin is the same as the switchboard English
systems.

As indicated before, SDS is complementary to multi-GPU
parallelization. Therefore, SDS was combined with asyn-
chronous SGD (ASGD) in this experiment to obtain faster
DNN BP training. The ASGD architecture was constructed
as in [7]. The experiments were performed on a server with
two GPU cards. Results of both the single GPU SDS training

and the combination of SDS and ASGD are shown in table 1.
Instead of DUR, the total BP training time are given here as
more realistic and comparable results. The NVIDIA GeForce
GTX 770 cards are used in the experiments here.

System
English (WER %) Mandarin (CER %)
swb fsh Time man1 man2 Time

Full Training 19.7 22.0 158h 15.0 7.9 108h
SDS 19.9 22.1 87h 15.1 7.8 60h

SDS + ASGD 19.7 21.9 52h 15.0 7.9 37h

Table 1: Performance of SDS and combination with ASGD
on switch board English and Mandarin LVCSR tasks

It can be observed that, with single GPU, SDS only uti-
lizes about 55% of the whole dataset in the entire training
process while nearly with no loss in the recognition perfor-
mance on both English and Mandarin tasks. It means that
SDS can achieve about 2.0 times speed-up than the normal
full training and greatly shorten the training cycle. Further-
more, combined with ASGD, the final BP training framework
achieved almost 3.0 times speed-up on a 2-GPU server than
the normal single-GPU baseline without any loss in accuracy.
This is much faster than the pipeline BP (1.9 times speedup)
[5] and the ASGD (1.6 times speedup) [7] using the similar
facility.

5. CONCLUSIONS

Speeding up the BP training of DNN is of great interest to the
speech community. Previous works all focused on the par-
allelization framework, especially multi-GPU parallelization.
In this paper, an alternative novel framework is proposed to
speed up BP training, referred to as stochastic data sweeping
(SDS). In this framework, training data is selected stochas-
tically from the whole set and the quantity is reduced dra-
matically at each training epoch. SDS cuts off the training
time tremendously due to the fact that less training data is
used. Furthermore the SDS approach can be easily integrated
into multi-GPU parallelization approaches to form a much
faster BP training framework. Experiments show that the fi-
nal combined framework achievs almost 3.0 times speed-up
on 2 GPUs than the normal single one, at no loss of recogni-
tion accuracy. This is much faster than the recently published
pipeline BP (1.9 times speedup) [5] and the ASGD (1.6 times
speedup) [7] using similar hardware setup.

6. REFERENCES

[1] Frank Seide, Gang Li, and Dong Yu, “Conversational
speech transcription using context-dependent deep neu-
ral networks,” in Proc. InterSpeech, 2011, pp. 437–440.

[2] George E Dahland, Dong Yu, Li Deng, and Alex Acero,
“Context-dependent pre-trained deep neural networks

243

for large-vocabulary speech recognition,” IEEE Trans-
actions on Audio, Speech & Language Processing, vol.
20, no. 1, pp. 30–42, 2012.

[3] Geoffrey E Hinton, Simon Osindero, and Yee-Whye
Teh, “A fast learning algorithm for deep belief nets,”
Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[4] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams, “Learning representations by back-
propagating errors,” Cognitive modeling, vol. 1, pp. 213,
2002.

[5] Xie Chen, Adam Eversole, Gang Li, Dong Yu, and
Frank Seide, “Pipelined back-propagation for context-
dependent deep neural networks.,” in Proc. InterSpeech,
2012.

[6] Pan Zhou, Cong Liu, Qingfeng Liu, Lirong Dai, and Hui
Jiang, “A cluster-based multiple deep neural networks
method for large vocabulary continuous speech recogni-
tion,” in Proc. ICASSP. IEEE, 2013, pp. 6650–6654.

[7] Shanshan Zhang, Ce Zhang, Zhao You, Rong Zheng,
and Bo Xu, “Asynchronous stochastic gradient descent
for dnn training,” in Proc. ICASSP. IEEE, 2013, pp.
6660–6663.

[8] John J Godfrey and Edward Holliman, “Switchboard-1
release 2,” Linguistic Data Consortium, Philadelphia,
1997.

[9] Dong Yu, Frank Seide, Gang Li, and Li Deng, “Exploit-
ing sparseness in deep neural networks for large vocab-
ulary speech recognition,” in Proc. ICASSP, 2012.

[10] Abdel rahman Mohamed, George E. Dahl, and Geof-
frey E. Hinton, “Acoustic modeling using deep belief
networks,” IEEE Transactions on Audio, Speech & Lan-
guage Processing, vol. 20, no. 1, pp. 14–22, 2012.

244

