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ABSTRACT

Random and structured noise both affect seismic data, hiding

the reflections of interest (primaries) that carry meaningful geo-

physical interpretation. When the structured noise is composed

of multiple reflections, its adaptive cancellation is obtained

through time-varying filtering, compensating inaccuracies in

given approximate templates. The under-determined problem

can then be formulated as a convex optimization one, pro-

viding estimates of both filters and primaries. Within this

framework, the criterion to be minimized mainly consists of

two parts: a data fidelity term and hard constraints model-

ing a priori information. This formulation may avoid, or at

least facilitate, some parameter determination tasks, usually

difficult to perform in inverse problems. Not only classical

constraints, such as sparsity, are considered here, but also

constraints expressed through hyperplanes, onto which the

projection is easy to compute. The latter constraints lead to

improved performance by further constraining the space of

geophysically sound solutions.

Index Terms— Optimization methods, Wavelet trans-

forms, Adaptive filters, Geophysical signal processing, Signal

restoration.

1. INTRODUCTION

Adaptive filtering techniques are meant to optimize coeffi-

cients of variable filters, according to adapted cost functions

working on error signals. Adaptive subtraction [1, 2] is at play

in seismic data recovery problems where approximate models

are adapted or matched to actual data, throughout adaptive

filters. These models are obtained from geophysical model-

ing, and known a priori. One such situation is the filtering of

secondary reflexions, or multiples. Geophysical signals of in-

terest, named primaries, follow wave paths depicted in dotted,

dashed and solid blue in Fig. 1. Since the data recovery prob-

lem is generally under-determined, geophysicists have devel-

oped pioneering sparsity-promoting techniques. For instance,

robust, ℓ1-promoted deconvolution [3] or complex wavelet

transforms [4, 5] still pervade many areas of signal processing.

• • • • • • •

Towed streamerHydrophone

Fig. 1. Principles of marine seismic data acquisition and wave

propagation. Towed streamer with hydrophones. Reflections

on different layers (primaries in blue), and reverberated distur-

bances (multiple in dotted and dashed red).

Although the contributions are generally considered linear,

several types of disturbances, structured or more stochastic,

affect the relevant information present in seismic data. Mul-

tiples correspond to seismic waves bouncing between layers

[6], as illustrated with red dotted and dashed lines in Fig. 1.

These reverberations share waveform and frequency contents

similar to primaries, with longer propagation times. From the

standpoint of geological information interpretation, they often

bedim deeper target reflectors. For instance, the dashed-red

multiple path may possess a total travel time comparable with

that of the solid-blue primary. Their separation is thus required

for accurate subsurface characterization. We suppose here that

one or several approximate templates of potential multiples are

determined, off-line, based on primary reflections identified

in above layers or wave-propagation modeling. Model-based

multiple filtering is similar to adaptive echo cancellation prac-

tice (see [7] for details), and is now considered as a geophysics

industry standard.

We propose a methodology for primary/multiple adaptive

separation based on these approximate templates. It addresses
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at the same time structured reverberations and a more stochas-

tic part. Let n ∈ {0, . . . , N − 1} denote the time index for the

observed seismic trace z, acquired by a given sensor (here, an

hydrophone). We assume, as customary in seismic, a linear

model of contributions:

z(n) = y(n) + s(n) + b(n) . (1)

The unknown signal of interest (primary, in blue) and the sum

of undesired, secondary reflected signals (different multiples,

in red) are denoted, respectively, by y = (y(n))0≤n<N and

(s(n))0≤n<N . Other unstructured contributions are gathered in

the noise term b = (b(n))0≤n<N . We assume that J templates

(r
(n)
j )0≤n<N,0≤j<J for the disturbance signal are available,

which are related to (s(n))0≤n<N through an FIR (Finite Im-

pulse Response), possibly non-causal, linear model

s(n) =
J−1
∑

j=0

p′+Pj−1
∑

p=p′

h
(n)

j (p)r
(n−p)
j (2)

where h
(n)

j is an unknown impulse response (Pj tap coeffi-

cients) corresponding to template j and time n and where

p′ ∈ {−Pj + 1, . . . , 0} (p′ = 0 corresponds to the causal

case). It must be emphasized that the dependence w.r.t. the

time index n of the impulse responses implies that the filter-

ing process is not time invariant, although it can be assumed

slowly varying in practice.

The purpose of this work is to provide means to identify

y and hj , by imposing hopefully meaningful constraints onto

the above system.

2. RELATION TO PRIOR WORK

The separation of primaries and multiples is a classical issue in

seismic exploration. Most published solutions, tailored to spe-

cific levels of prior knowledge, are very dependent on seismic

data-sets. They generally rely on adapted transforms (Radon,

Fourier transforms) and some form of least-squares adaptive

filtering. Among the vast literature, we refer to [2, 8], for a

recent account on adaptive subtraction of multiples, including

shortcomings of standard ℓ2-based methods. With weak pri-

mary/multiple decorrelation, poor data stationarity or higher

noise levels, traditional methods fail. Due to the parsimonious

layering [9] of the subsurface (illustrated in Fig. 1), spar-

sity promotion suggests the use of sparsifying transforms (e.g.

wavelet/curvelet frames [10, 11]), potentially combined with

robust norms (approximate ℓ1 in [12]), quasi-norms or source

separation methods [13, 14]. To date, their genericity may

be limited by the number of possible penalties to constrain

feasible solutions, and the crucial issue of hyperparameter

determination in such methods.

In [7, 15], the authors incorporate plausible knowledge

via additional metrics. Prior multiple templates are supple-

mented with Gaussian noise assumptions, wavelet-domain

sparsity, smooth variations and energy concentration criteria.

Joint estimation of primaries and adaptive filters is performed

with a proximal algorithm. To alleviate the hyperparameter

estimation issue, we reformulate the previous approach as a

constrained minimization problem. This allows us to more

easily determine data-based parameters. We focus here on the

exploration of various constraint efficiency in wavelet frame

subbands for the primary signal. Interestingly, convex sets

defined as appropriate hyperplanes can outperform standard

ℓ1-ball constraints.

The paper is organized as follows. In Section 3 we rewrite

the observation model and formulate the constrained optimiza-

tion problem. The definition of the constraint sets and the

adopted optimization strategy follows. Section 4 details the

simulation results. Finally, conclusions are drawn in Section 5.

3. CONSTRAINED FORMULATION

3.1. Observation model

Model (2) can be written more concisely as

s = Rh (3)

by appropriately defining R ∈ R
N×Q, where Q = NP with

P =
∑J−1

j=0 Pj and h ∈ R
Q [15]. On the one hand, the matrix

R contains the J templates for every time index n and tap

index p. On the other hand, the vector h is similarly defined as

the concatenation of all (unknown) time-varying filter impulse

responses. With this notation, the observed data z are given by

z = y +Rh+ b. (4)

Now, we turn our attention to solving the ill-posed inverse

problem of estimating y and h from the observation vector z.

3.2. Constrained problem formulation

Our objective here is to propose a variational approach aiming

at providing relevant estimates of the primary signal y and time-

varying filters h related to multiples. To this end, define an

objective function composed of two convex terms being related

to either y or h through functions ϕ : RN → ]−∞,+∞] and

ρ : RQ → ]−∞,+∞], respectively. We propose to solve the

following constrained minimization problem

minimize
y∈RN ,h∈RQ

αρ(h) + (1− α)ϕ(y)

subject to











ψ(z − y −Rh) ≤ 1

h ∈ C

Fy ∈ D

(5)

where α ∈ [0, 1], F ∈ R
K×N , K ≥ N , models a (non neces-

sarily tight) frame operator [16], and C and D are nonempty

closed convex constraint sets that are defined hereafter.
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3.3. Constraint set definitions

We discuss here the different choices that can be adopted for

the potential functions as well as the convex sets C and D.

These choices reflect some a priori knowledge one may have

on the variables to be estimated. The idea in addressing a

constrained formulation instead of a regularized formulation

is to avoid or, at least to facilitate, hyperparameter estimation.

This is detailed later on, in the simulation part.

3.3.1. Coupling constraint: function ψ

The seismic noise b is naturally assumed to be additive white

Gaussian with zero-mean and variance σ2. A natural choice for

ψ is thus to take ψ = ‖ . ‖2/(Nσ2). When the noise variance

is unknown, it can be easily and accurately estimated by using

classical techniques such as the median absolute deviation

(MAD) [17] wavelet estimator [18, p. 446].

3.3.2. Hard constraints on filters h: convex set C

As mentioned earlier, the filters are assumed to be time-varying.

However, real case study showed that those filters have smooth

variations along time index n. To ensure that this a priori

characteristic is satisfied for the estimated filters, we propose to

introduce the following upper bound on the impulse response

variations [15]:

∀(j, p, n), |h
(n+1)
j (p)− h

(n)
j (p)| ≤ εj,p (6)

where εj,p ∈ ]0,+∞[.

3.3.3. Hard constraints on primaries y: convex set D

First of all, the primary signal y is assumed to be well rep-

resented onto a wavelet frame [16], whose analysis operator

is F ∈ R
K×N . To further account for the wavelet analysis

frame coefficient properties, we propose to split the convex set

D as D1 × · · · ×DL. Indeed, the idea here is to construct L
partitions of {1, . . . ,K} denoted by {Kℓ | ℓ ∈ {1, . . . ,L}}
where L corresponds to the number of subbands and Kℓ is the

ℓ-th subband. In this work, we investigate two kinds of convex

sets (Dℓ)ℓ∈{1,...,L}:

1. The first one is widely used in the literature and consists

of defining sets of the form: for every ℓ ∈ {1, . . . ,L},
Dℓ = {(xk)k∈Kℓ

|
∑

k∈Kℓ
φℓ(xk) ≤ ηℓ}, where ηℓ ∈

R, and φℓ : R
|Kℓ| → ]−∞,+∞] is a proper lower-

semicontinuous convex function. For example, this

constraint set definition enables to incorporate sparsity

constraints on the wavelet frame coefficients in the opti-

mization problem, by choosing e.g. φℓ = | · |.

2. The second one is more original and consists of defin-

ing hyperplanes: for every ℓ ∈ {1, . . . ,L}, Dℓ =
{(xk)k∈Kℓ

|
∑

k∈Kℓ
φℓ((FLz)k)xk = ηℓ}, where L ∈

R
N×N is an appropriate linear operator and φℓ : R→

R. The simplest choice for L is to take the identity oper-

ator L = I. An alternative choice, which is reminiscent

of Wiener filtering, is

L = λ1 Diag
(

(1 + λ1 + λ2‖R
(0)‖2)−1 , . . . ,

(1 + λ1 + λ2‖R
(N−1)‖2)−1

)

(7)

where (λ1, λ2) ∈ ]0,+∞[
2

and for every n ∈ {0, . . . , N−
1}, R(n) denotes the n-th row of matrix R.

3.4. Optimization strategy

One can note that Problem (5) can be reexpressed as

minimize
y∈RN ,h∈RQ

f (y,h)+ιS

(

z − [I R]

[

y
h

])

+ιC(h)+ιD(Fy)

(8)

where f : RN × R
Q → ]−∞,+∞] : (u, v) 7→ αρ(v) + (1−

α)ϕ(u), S =
{

w ∈ R
N | ‖w‖2 ≤ Nσ2

}

and ιS is the indica-

tor function of the set S defined as

ιS(u) =

{

0 if u ∈ S

+∞ otherwise
(9)

(a similar notation being used for C and D). Such convex

optimization problems, involving the sum of 4 convex func-

tions and various linear operators, can be solved in an efficient

manner by using primal-dual approaches such as the Mono-

tone+Lipschitz Forward-Backward-Forward (M+L FBF) algo-

rithm [19] as well as the algorithm in [20], which was recently

extended in [21, 22]. The functional to be minimized being

composed of convex functions as well as indicator functions

of convex sets, the algorithm typically requires to compute,

in parallel, proximal operators and projections onto the dif-

ferent closed convex sets. Concerning proximity operators,

closed-form expressions for a wide class of convex functions

can be found in [23]. The projection onto C is explicit and

reduces to projections onto hyperslabs (after appropriate split-

ting). Similarly, when considering affine constraint for convex

set D (second case) the projection is explicit. For all the re-

maining cases, projections onto ℓp-ball are performed, some

of which can be computed explicitly (e.g. ℓ2-ball or ℓ∞-ball)

or iteratively (e.g. ℓ1-ball [24]).

4. RESULTS

Simulation tests are performed on synthetic seismic data. From

realistic primary signal y and templates R where J = 2, we

generated observations according to model (4) where appro-

priate time-varying filters h are used with P1 = 6 and P2 = 6.

The primary signal as well as the observations with σ = 0.01
are represented Fig. 2. The criterion to be minimized is

defined by (5) where ϕ is chosen to be the ℓ1-norm, and ρ
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Fig. 2. Observed signal z (red; σ = 0.01), original y (blue).
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Fig. 3. Estimated signal ŷ (magenta), original signal y (blue).

D is the intersection of two hyperplanes defined from the

identity and the sign functions.

is the squared ℓ2-norm (see [7] for more extensive tests on

different choices for ρ). Concerning the constraint set defini-

tions, on the one hand, C is defined by (6) where, for every

p, ε1,p = ε2,p = 0.17. On the other hand, D is defined by

choosing F to be a (non tight) undecimated wavelet frame

with Daubechies wavelets of length 8 and 4 resolution levels.

We have considered the two possibilities described in Section

3.3.3 where, in the first case (inequality constraint), φℓ ≡ φ
where φ is either the ℓ1, ℓ2 or the ℓ∞-norm. In the second

case, φℓ ≡ φ where φ is either the identity or the sign function;

furthermore, L is chosen according to (7) where λ1 = 0.02
and λ2 = 0.001. In this last case, both affine constraints have

also been considered jointly (intersection of the two constraint

sets).

Restoration results, using M+L FBF algorithm, for the

primary signal in the case when σ = 0.01, are displayed in

Fig. 3. The associated estimated multiples are plotted in

Fig. 4. From these two figures, one can note that the multiples

are quite well estimated and adequately separated from the

primary. The stochastic part is accurately removed, even if

some residual noise remains, for instance when the signal is

of small amplitude. Table 1 shows the signal-to-noise ratios

obtained for the estimation of y and s. Simulations have been

0 100 200 300 400 500 600 700
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 4. Estimated multiples ŝ (magenta), original multiples s
(blue). D is the intersection of two hyperplanes defined from

the identity and the sign functions.

σ 0.01 0.04
φ α SNRy SNRs α SNRy SNRs

0 0.4 23.98 15.79 0.9 15.03 9.60

ℓ1 0.4 25.98 16.16 0.9 18.19 6.61

ℓ2 0.6 25.59 16.02 0.8 17.84 9.20

ℓ∞ 0.6 24.48 15.81 0.8 16.24 8.69

I 0.4 26.19 15.81 0.2 19.74 8.84

sign 0.3 24.43 14.73 0.1 14.75 4.58

I+sign 0.3 26.40 15.56 0.1 18.43 5.94

Table 1. SNR for the estimations of y and s (SNRy and SNRs,

resp.) in dB considering different convex constraint sets D
and two noise levels. Upper table part: “classical constraints”

and lower table part: hyperplane contraints.

run for different convex sets D and for two noise levels (with

standard-deviation σ = 0.01 and σ = 0.04). The notation

φ = 0 has been used in the case when no constraint is applied

to Fy. This allows us to evaluate the gain (up to 1.4 dB)

brought by the introduction of prior information on Fy through

a constrained formulation.

5. CONCLUSIONS

This paper focuses on the constrained convex formulation of

adaptive multiple removal. The proposed approach, based on

proximal methods, is quite flexible and allows us to integrate

a large panel of hard constraints corresponding to a priori

knowledge on the data to be estimated (i.e. primary signal and

time-varying filters). A key observation is that some of the

related constraint sets can be expressed through hyperplanes,

which are not only more convenient to design, but also eas-

ier to implement through straightforward projections. Since

sparsifying transforms and constraints strongly interact [7], we

now study the class of hyperplane constraints of interest as

well as their inner parameters, together with the extension to

higher dimensions.
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