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ABSTRACT

In this paper, we present a semi-automatic algorithm to de-

tect faults in seismic datasets using Hough transform. As

a multistage approach, our method first highlights the like-

ly fault points from the discontinuity map of one seismic sec-

tion. Hough transform is then applied to detect faults features.

Considering geological constraints of faults, false features are

removed using a double-threshold method. Then, we get an

initial fault line by connecting the remaining faults features.

In the last stage, by incorporating the discontinuity informa-

tion from step one, we tweak the initial fault line to obtain

more accurate and reliable results. Our experimental results

show that our method can delineate the fault lines in seismic

sections more accurately than a state-of-the-art method.

Index Terms— Hough transforms, fault detection, fea-

ture extraction, seismic imaging

1. INTRODUCTION

A Fault, a common geological structure, is formed by a dis-

placement between neighboring tectonic plates. In some cas-

es, faults seal the porous reservoir rocks and lead to the forma-

tion of petroleum reservoirs. Hence, the detection of faults in

seismic volumes is of great importance for the identification

of reservoir regions. The accuracy of fault detection is strong-

ly tied to the cost of the planned drilling and the boreholes.

For several decades, fault detection was implemented manual-

ly and its accuracy depended on the experience of interpreters.

For gigantic amount of seismic data, manual interpretation is

very time-consuming. Therefore, the use of computer pro-

grams to detect faults in large seismic volumes has become

an active research area for several years. Although it is diffi-

cult to implement fully automatic fault detection in practice,

many companies, such as Schlumberger [1] and Exxonmobil,

have built their interactive software platforms to label faults

semi-automatically.

Faults are caused by rock movements, which cause dis-

continuities in horizons. Hence, detecting such discontinu-

ities is the main challenge in identifying faults in seismic

datasets. Several algorithms were proposed in the literature

to detect discontinuities in horizons using certain seismic at-

tributes. Examples of such attributes include coherence [2],

variance [3], curvature [2] or gradient amplitude [4, 5]. De-

pending on the seismic attributes alone does not fully detect

faults with a reasonable accuracy that is expected by the inter-

preters. Therefore, another class of techniques have been pro-

posed to extract fault information from the calculated seismic

attributes. For example, Gibsen et al. [6] proposed a multi-

step workflow of fault surface detection, which first grouped

the highlighted fault points in local planar patches and then

merged these patches into large fault surfaces. Cohen et al. [7]

applied multiple directional filters to enhance the contrast of

the discontinuity cube and then used skeletonization to ex-

tract the thinning fault surfaces. More recently, a class of

fault detection techniques were proposed and are based on

the concept that faults can be described as structured edges.

For example, Hough transform was proposed to delineate the

fault lines in time slices [8] and was extended to detect fault

surfaces in its cascade form [9]. Although the results in these

papers are not strong, they serve as a very good start to em-

ploy image processing algorithms to detect seismic attributes.

More recently, Hale in [10] proposed an automatic fault de-

tection method based on directional Gaussian filter. In this

method, the semblance is used to generate a discontinuity

map. Then, a directional Gaussian filter is used to refine the

discontinuity map. Finally, the maximum discontinuity val-

ue within a window is chosen to represent a fault point. The

whole operation in [10] is fully automated and efficient.

In this paper, we propose a reliable fault detection algo-

rithm that is based on Hough transform. The block diagram of

our proposed method is shown in Fig. 1. First, the likely fault

points are highlighted in a binary image by thresholding the

discontinuity map. Second, we apply Hough transform to the

binary image to detect fault features. In the third step, we pro-

pose a method to eliminate false features based on geological

constraints. In the final step, we tweak the fault lines using

the discontinuity information obtained from the first step.

In Section 2, we explain the proposed methodology in de-

tails. Section 3 illustrates the experimental results while we

conclude the paper in Section 5.
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Fig. 1: Block diagram of fault detection method based on Hough transform

2. THE PROPOSED METHOD

2.1. Fault Points Highlighting

Discontinuities in horizons are the most important character-

istic of faults that can be used to highlight the likely fault

points. To measure discontinuities in seismic sections, we cal-

culate the semblance attribute that was proposed by Marfurt

et al. [11] and it outperforms earlier algorithms by involving

the local dip information. For every point in a seismic sec-

tion, its discontinuity value can be obtained from an analysis

window that is oriented at the same dip with the local horizon.

In such a square window with size 2r+1, discontinuity value

D(x, z) can be computed as:

D(x, z) =
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where S(x, z) is the intensity of the seismic signal at point

(x, z). In seismic sections, x and z represent the coordinates

on crossline and depth direction, respectively. The ln(·) op-

erator used here increases the contrast between high and low

discontinuities, which makes the selection of the likely fault

points more reliable. Greater value of D(x, z) means a higher

probability that the corresponding point belongs to a fault. If

D(x, z) is close to zero, the point is assumed to be located on

a horizon. Therefore, we apply a threshold T0 to the discon-

tinuity map in order to determine the likely fault points. This

thresholding operation is given as follows:

B(x, z) =

{
1 if D(x, z) ≥ T0

0 otherwise
. (2)

The choice of T0 is a designed parameter that can be deter-

mined empirically. After the thresholding step, a binary im-

age is obtained where the likely fault points are highlighted

as white pixels.

2.2. Hough Transform

Hough transform [12] as a feature extraction technique has

been widely used in the field of digital image processing to

detect edges. In general, points in an image space can be

transformed to parameters of curves in a parameter space and

vice versa with the following transform equation:

x cos θ + y sin θ = r. (3)

As illustrated in Fig. 2, r and θ are constant for any point on

the blue line in the image space. On the other hand, x and y
are constant for any point on a curve in the parameter space.
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Fig. 2: Hough transform between image and parameter space

Henceforth, a line in the image space can be represented by

the intersection of curves in the parameter space. In this pa-

per, we use this idea to detect fault features in the form of

lines from the highlighted points by identifying points in the

parameter space where the largest number of lines intersect.

Generally, detection of fault lines based on Hough trans-

form is an interactive process where the user could specify

the characteristics of the output. For example, the user could

specify the number of lines, the minimum length of these

lines, and the slope interval. Although these parameters af-

fect the output quality, users do not have to spend too much

time on tweaking them because of the removal of the false

features in the following section.

2.3. False Feature Removal

It is inevitable to have false features in the results from the

previous step. To overcome this issue, we propose a double-

threshold method to remove all false features. Fig. 3(a) illus-

trates two examples of the output of a Hough transform step.

The first example is inside the dashed box while the second

example is in the solid box. Based on geological constraints,

the lines inside these two boxes are considered false. The one

in the dashed box is an outlier because it is isolated from oth-

er detected lines or features. The lines in the second example

in the solid box represent neighboring group where the lines

are very close to each other, which is geologically impossible.

One method to recover from the artifact of neighboring group
is to combine all lines within a neighboring group into one

line.

The identification of the false features illustrated in

Fig. 3(a) depends on a function of the spatial relationship

between lines that are produced by the Hough transform. In

this paper, we define two such functions, absolute distance
(AD) and lateral distance (LD). Absolute distance represents

the spatial distance between two lines, which can be comput-

ed as:
AD = ‖li − li−1‖22, (4)
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Fig. 3: (a) Features of faults detected by Hough transform. (b)

Illustration of lateral distance (LD). (c) Features after remov-

ing false ones. (d) Initially labeled fault line by connecting

features in (c).

where li, i = 1, 2, · · · , n are the 2×2 matrices containing the

starting position (xb,i, zb,i) and the ending position (xe,i, ze,i)
of lines and n is the total number of distinct lines. Meanwhile,

the length of these lines L (Ii), i = 1, 2, · · · , n, can be cal-

culated as: L (Ii) =
√

(xb,i − xe,i)2 + (zb,i − ze,i)2. The

ordering of these lines depends on their vertical spatial posi-

tions.

In the definition of the lateral distance, as shown in

Fig. 3(b), vector mi = (
xb,i+xe,i

2 ,
zb,i+ze,i

2 ) represents the

midpoint of line Ii. The lateral distance can be derived from

the projection of the vector connecting mi and mi−1 on the

direction perpendicular to Ii−1 as shown in the following

equation:
LD =| (mi −mi−1) · vi−1,⊥ |, (5)

where vi−1,⊥ is the unit vector perpendicular to Ii−1. Using

the two quantities AD and LD, we apply a double-threshold

method to filter out the false features. The double-threshold

method is given in the following pseudo code.

Algorithm 1 False feature removal

for i ← 1 to n do
if LD ≥ T1 then

li ← li−1

else
if AD ≤ T2 then

li ← argmax
x∈{li,li−1}

L(x)

end if
end if

end for

T1 is the threshold for LD and T2 is the threshold for AD.

If LD is greater than T1, then li is far away from li−1 and

should be discarded. Similarly, if AD is less than T2, then li
and li−1 are located very close to each other and they should

be merged into a longer line.

2.4. Fault Surface Labeling

After removing the false features, the remaining features con-

struct the main part of faults, as shown in Fig. 3(c). Here,

we define the matrix P0 = (x0, z0) to describe the posi-

tions of all points in these features, where x0 and z0 respec-

tively contain the coordinates on crossline and depth direc-

tion. Therefore, in Fig. 3(d), by connecting the detected fea-

tures successively, fault line is initially labeled and denoted as

Pc = (xc, zc). The labeled result is not accurate to describe

the details of the fault. To improve the accuracy, we utilize

the discontinuity map and re-label the fault.

The position of a point i in Pc can be denoted as Pc(i) =
(xc(i), zc(i)), i = 1, 2, · · · . Searching along the crossline

direction with radius rs illustrated in Fig. 3(d), a group of

points Pm = (xm, zc) corresponding to the local maximum

discontinuity values are identified. We denote these points

as xm(i) and we calculate these points using the following

expression:

xm(i) = argmax
x∈[−rs+xc(i),xc(i)+rs]

D (x, zc(i)) . (6)

Now, for each crossline, we have two points that are can-

didates to be fault points. One point, xc(i), which lies on

the line in Fig. 3(d). The second point , xm(i), is obtained

from the discontinuity map using Eq. (6). The next step is

to decide the location of the fault point within the interval

[xm(i), xc(i)]. Therefore, we need to measure the relative in-

fluence of xc and xm using the following objective function:

x̂ = argmin
x

λ1‖x− xc‖22 + λ2‖x− xm‖22, (7)

where λ1 and λ2 are the weights of xc and xm in the objective

function and x̂ is the optimal labeling outcome. The resulting

x̂ will have a zig-zag shape, which does not match a true geo-

logical structure. Therefore, we apply a smoothing filter to x̂
in order to filter out the high frequency components.

The next step is to combine the original strong fault fea-

tures shown in Fig. 3(c) and the refined features of the blue

lines which are shown in Fig. 3(d). We merge the smoothed

result x̂s and the detected features x0, to obtain the optimized

fault line per the following equation: Pd = (xd, zc):

xd(i) =

{
x0(k) If ∃k : zc(i) = z0(k)

x̂s(i) otherwise
. (8)

3. EXPERIMENTAL RESULTS

The 3D seismic dataset used in our experiment is from the

Netherlands offshore F3 block acquired in the North Sea [13].

We focus on the seismic volume containing long and apparent

faults located in the inline range from 200 to 300, the crossline

range from 700 to 1200 and the time range from 400ms to

1100ms.

The example in Fig. 4 demonstrates the seismic section

Inline 256 and its corresponding discontinuity map, where

the colors of red and light blue represent higher discontinu-

ity in contrast to the dark blue ones for the continuous hori-

zons. The likely fault points can be highlighted after thresh-

olding the discontinuity map with T0 = 0.9 and the result

is shown in the binary image in Fig. 4(c). Next we apply

Hough transform to Fig. 4(c) in order to detect the fault fea-

tures from the highlighted fault points with the specified num-

ber of lines 20, line minimum length 2 and line slope inter-

val [80◦, 100◦]. Fig. 5(a) illustrates the detected fault features

in the form of the white line segments, which are distributed
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around the likely fault region. Here, the region where faults

appear is magnified for a better illustration. Because of the

appearance of false features, it’s essential to remove them by

using the double-threshold method. In this case, we selected

AD = 11 and LD = 4. After removing the false features, the

remaining ones in Fig. 5(b) are part of the actual fault. Ac-

cording to Eq. (7) with λ1 = 0.2 and λ2 = 0.8, the optimized

fault line (x̂, zc) has a zig-zag shape shown in Fig. 5(c). We

further smooth the detected fault line to obtain a line (x̂s, zc)
illustrated in Fig. 5(d). Finally, by combining x̂s and the fault

features x0 in Fig. 5(b), we delineate the fault lines in the

seismic section, as shown in Fig. 5(e).

In Fig. 5(f), we compare the white fault lines detected us-

ing our proposed method with the manually labeled ground

truth in red. The two lines almost overlap at most locations

except for the mismatch located mainly at the top of the im-

age. Furthermore, Fig. 5(g) shows the white fault line detect-

ed by the approach in [10]. Comparing our method with the

one proposed in [10], we see that our method produces more

accurate results. To quantitatively measure the difference be-

tween the detected faults and the ground truth, we propose

a distance function as dist =
∑N

i=1 |xd(i)− xt(i)|2, where

xd and xt respectively correspond to the x coordinates of N
pixels in the detected fault lines and the ground truth. For In-

line 256, the corresponding distance of the proposed method

is 316 which is 15% less than the distance of 379 for the de-

tected result in [10]. The main reason is the step where we

remove false features, which is one of the major contributions

of this paper.

We further test the robustness of our method by applying

the same method with the same parameters to Inline 246 and

Inline 268. The results are shown in Fig. 6. Clearly, we can

still delineate the faults with a very high accuracy.
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5. CONCLUSION

In this paper, we proposed a semi-automatic algorithm for

fault detection using Hough transform, which determines

fault features from a set of candidate fault points. After the

removal of false features, the remaining fault features act as

the main parts of the entire fault. Finally, we tweak fault

lines to obtain a more accurate result by the combination

of the detected features and the discontinuity map. Exper-

imental results show that our method has a better accuracy

performance than the state-of-the-art method. Our method re-

quires three threshold values that are designed parameters and

dataset dependent. In a future work, we plan to automatically

calculate these values to make our method fully automatic.

(a) Seismic section Inline 256 (b) Discontinuity map

(c) Highlighted fault points

Fig. 4: Seismic section and the highlighted fault points

(a) (b) (c) (d) (e) (f) (g)
Fig. 5: (a) Detected fault features based on Hough transform.

(b) Fault features after false feature removal. (c) Zig-zag fault

line optimized as in Eq. (7). (d) Smoothed version of (c). (e)

Fault line after combining (b) and (d). (f) Fault line detected

by proposed method. (g) Fault line detected by the method

in [10].

(a) Faults in Inline 246 (b) Faults in Inline 268

Fig. 6: Detected faults in the neighboring seismic sections
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