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ABSTRACT 

 

Seismic migration aims to re-locate recorded seismic events 

to their true locations in the subsurface and requires a 

velocity model.. To improve the resolution of such a 

subsurface image, we employ ideas taken from Fresnel-

aperture migration which uses low-frequency stationarity to 

select that part of data that coherently contribute to the final 

image. Thus, this technique offers an efficient way to 

window the coherent reflection energy which if being 

aligned can be input to a window-steered MUSIC approach 

with the potential of giving high-resolution seismic images. 

 

 

Index Terms— seismic imaging, MUSIC, resolution 

 

1. INTRODUCTION 

 

One major class of techniques employed to image seismic 

data is integral-equation (Kirchhoff type) migration (IEM) 

[1]. Like other imaging techniques its resolution power is 

diffraction limited. Moreover, the basic inherent assumption 

is that the larger migration aperture the better resolution. In 

case of reflections, this is not true in general and the use of a 

too large aperture may lead to severe degradation of the 

final seismic reconstruction. That part of the data which 

constructively contributes to an image point, is denoted the 

Fresnel aperture. In case of both reflections and diffractions,  

we use a technique introduced by [2] to identify the 

corresponding Fresnel apertures in an efficient manner. The 

Fresnel apertures of diffractions are significantly larger 

reflecting their higher resolution capabilities. Such 

windowed data can then be input to a standard IEM 

technique. However, in this paper we advocate for the use 

of a windowed-MUSIC approach to imaging. This implies 

that the Fresnel-aperture selected data are aligned or steered 

and combined with the high-coherency technique Multiple 

Signal Classification (MUSIC) introduced by [3].  

 

 

2. FRESNEL APERTURE 

 

If we consider the basic working principle of IEM, the 

image of a general subsurface point (acting either as a 

scatterer or as part of a reflector) is formed by adding 

seismic data values falling along a time-diffraction curve 

defining the migration operator. The concept is shown 

schematically in Fig.1 in case of a single reflector. 

 

                  
 
     Fig.1  Schematics of the scattering traveltime (time-diffraction 

               curve) representing the migration operator. 

 

It is generally assumed that a large migration aperture, i.e. a 

migration operator acting on many traces simultaneously, is 

a needed requirement.  However, this is only partly true. In 

the simple analysis to follow we will demonstrate that in 

case of seismic reflections, only a small area defined by the 

so-called Fresnel aperture is needed. However, in case of 

diffractions, the corresponding Fresnel aperture is much 

wider. 

Figure 2 shows a simple reflection experiment within the 

zero-offset limit (coinciding source and receivers), where 

the time-diffraction curve corresponding to reflection point 

R is ‘tangent’ to the zero-offset reflected energy in a region 

surrounding the point of emergence of the corresponding 

specular ray at the receiver array. We will denote this 

tangential contact the Fresnel aperture. Thus the envelope 

of the cluster of seismic traces receiving a contribution from 

a common point on the reflector forms what we call here the 

Fresnel aperture. It is important to stress that the Fresnel 

aperture is a result of considering several distinct Fresnel 

zones belonging to different specular reflection points 

surrounding the actual one (i.e. around R in Fig.2 for 

instance). All these Fresnel zones have in common the 

actual specular reflection point. This is the only condition to 

include a neighboring Fresnel zone’s trace in the Fresnel 
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aperture. If one considers a fixed scattering point in the 

subsurface, only that part of the migration operator which is 

represented by the Fresnel aperture will contribute 

constructively to its image. In the following we will 

introduce an efficient way to isolate that part of the 

operator, thus we will window the operator. 

 

          
Fig.2  Definition of the Fresnel aperture (ZO case) 

 

To illustrate this procedure, consider the simple zero-offset 

(ZO) synthetic data set as shown in Fig.3. It consists of a 

dipping reflector (20 degree) and a nearby scatterer, both 

embedded in a homogeneous background with a velocity of 

2000m/s. A Ricker wavelet with a center frequency of 20Hz 

was used as the pulse. Fairly strong white-noise with a STD 

of about 10% of the maximum signal strength was added.    
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                       Fig.3  Synthetic ZO data set 

 

Consider now the red vertical line in Fig.3 and let it 

represent the output position of a migrated trace (note, it 

also represents the lateral location of the scatterer in this 

example). Thus for each point along this line, the 

corresponding migration operator is calculated. If the data 

that falls along each operator are plotted horizontally for 

each image point along this line, a migration-operator panel 

is formed as shown in Fig.4a. Stacking the traces in this 

panel gives the corresponding image or migrated trace. This 

stacking process can be regarded as a spatial low-pass 

filtering of the data. Thus if the data corresponding to each 

operator are correspondingly low-pass filtered before 

stacking, the final migrated trace should virtually not 

change. In [2] a triangular smoothing filter is applied, and it 

is demonstrated using synthetic and field data that the final 

migrated image is virtually unchanged if such smoothening 

is applied or not. We apply the same smoothening approach 

to the operator panel in Fig.4a and obtain the filtered panel 

as shown in Fig.4b. This filtering can be regarded as a low-

frequency stationarity process, leaving only that part of the 

migration operator that represents coherent contributions. 

But such contributions are simply equivalent to the Fresnel 

apertures. This can be easily seen from Fig.4 b where the 

Fresnel aperture for both the reflected event and the 

diffracted event are now enhanced. We can also see the 

difference between the aperture lengths, with that of a 

diffraction being much wider as expected. Since the Fresnel 

aperture associated with diffractions is considerably larger, 

it is another demonstration of the well-known fact that 

diffractions carry higher-resolution information than 

reflections. 
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                                                   (b) 

 

        Fig.4 Migration-operator panel. (a) Raw data and (b)  

                 after filtering 
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By considering the full set of migration-operator panels 

after filtering, and by analogy with a velocity-analysis, the 

Fresnel apertures can be identified by coherency measures. 

For more details the reader is referred to [2]. 

 

3. WINDOWED-MUSIC APPROACH  TO  IMAGING 

 

We assume in the following that accurate migration 

velocities are available. For such a case, both reflections and 

diffractions are (near) horizontalized inside the 

corresponding Fresnel aperture in the filtered migration 

operator panel (cf. Fig.4b). Define now a data window 

surrounding the aligned event in the operator panel with the 

length of the Fresnel aperture (Nr traces) and a width of Nt 

time samples representing a typical pulse length (cf. red 

rectangle in Fig.4b in case of the reflection). The 

corresponding aligned or steered data D inside this window 

can formally be decomposed in three different contributions 

(all matrices having dimension Nr x Nt) 
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where A represents the average-trace contribution, ΔA  the 

residual traces and N the noise (cf. Fig.5).  

 

 
            Fig.5  Decomposition of steered data matrix D 

 

In Eq.(1), 
av

m
  is the average measurement vector associated 

with this window and u


  is a column vector of ones. The 

covariance matrix can now be calculated as 
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Assuming incoherency between the residual traces (each of 

them having an energy  ) and white noise with a variance 
2

n
 , this latter expression can be further simplified (also 

combined with Eq.(1)) 
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It is now straightforward to show that the vector 
r

Nu /
   is 

an eigenvector of the matrix R. Singular-value 

decomposition of the correlation matrix R, when computed 

from the actual data window, gives formally 
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where Vs and Vn are, respectively, the signal and nil 

subspace singular matrices, while Σs and  Σn are the 

corresponding singular-value matrices. 

 

MUSIC is a high-resolution technique that requires a larger 

number of observations than features to be resolved. If this 

requirement is fulfilled, the correlation matrix can be 

singular-value decomposed into two orthogonal spaces 

(respectively, signal and nil spaces). In the case of steered 

MUSIC as discussed here, we have Nr multiple 

measurements of the same single horizontal event 

(reflection or diffraction within the Fresnel aperture). Thus, 

the fundamental requirement is well satisfied. Since, the 

normalized vector u


 is an eigenvector of the correlation 

matrix R, this corresponds to the use of a horizontal steering 

vector and thus implying frequency independency.  This 

allows us to handle wideband seismic data as discussed by 

[4], who applied the concept of window-steered MUSIC to 

further improve the velocity analysis. 

We are now in the position to construct the MUSIC 

coherency measure (pseudo-spectrum) at a given time t0 and 

trace position m0  (assuming one eigenvalue in signal space) 
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where T

nnn
VVP   is the nil-space projection matrix and wsb is 

a so-called semblance-balancing factor taking into account 

that MUSIC yields amplitudes (pseudo-spectra) of arbitrary 

values [5]. For further details the reader is referred to [6]. 

 

4. SIMPLE DEMONSTRATION OF PRINCIPLES 

 

In order to demonstrate the main principles, we will employ 

the same simple test data (cf. Fig.3) as before,  but image 

the reflection and the diffraction separately. This will often 

be the case in practice, since the diffracted energy is quite 

low and normally masked by the stronger reflections. 

However, diffractions can be imaged separately after 

application of a diffraction-enhancement technique 

[7],[8],[9]. As discussed before (cf. Fig.4b), the Fresnel 

aperture of a diffracted event is significantly larger than in 

case of a reflection. Thus quite a large migration aperture 

(operator) is needed if a good image is to be obtained 

employing migration. In the example shown here, we used a 

Fresnel aperture width corresponding to the reflected event 

in Fig.4b, thus far too short. The corresponding migrated 

image obtained is shown in Fig.6a. The focus of the 

scattering energy is seen to be rather poor as expected due 

to the limited aperture. In addition, the effect of the noise is 

quite prominent since the migration operator is rather short. 

Next, employing the windowed MUSIC approach with data 

input again limited to the same aperture, gave the image 

shown in Fig.6b. The effect of noise has been virtually 
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eliminated and the focus is now well reconstructed. Thus a 

short Fresnel aperture can also be employed for diffractions 

in case of MUSIC imaging.  For further discussions about 

imaging of diffractions the reader is referred to [6] and [10]. 

In these works, a resolution beyond the classical diffraction 

limit of Rayleigh has been demonstrated employing the 

windowed MUSIC approach. 
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             Fig.6  (a) Kirchhoff migration and (b) MUSIC imaging 

                        of diffraction.   

 

Next, we continue to image the reflection response and use 

the same Fresnel-aperture length as in case of the 

diffraction, i.e. a length which is now tailored for the event 

considered. Reflections do not carry the same potential 

resolution as the diffracted events, since they represent an 

ensemble response of a series of infinitesimal scatterers. 

However, use of the windowed MUSIC technique can still 

improve the S/N as well as the sharpness of the reflector. 

This is demonstrated in Figs.7a and b, where the MUSIC 

image is seen to be quite superior in quality and resolution. 
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      Fig.7  (a) Kirchhoff migration and (b) MUSIC imaging 

                 of reflection.   

 

 

5. CONCLUDING REMARKS  

 

This paper has demonstrated that the resolution power of 

standard wave-equation imaging of seismic data can be 

further enhanced if combined with techniques adapted from 

the signal processing community. More specifically, 

recovering the Fresnel apertures corresponding to 

stationarity in the seismic data makes it possible to reduce 

distortions during the reconstruction process. In particular, 

when combined with the high-coherency technique MUSIC 

considerable improvements in the seismic resolution can be 

obtained. This observation applies for both reflections and 

diffractions, but with the latter ones being superior when it 

comes to the finer details. 

 

 

6. RELATION TO PRIOR WORK  

 

Improving the resolution of seismic images, has been an 

area of research for many years. Various approaches have 

been introduced and investigated, among them 1-D 

deconvolution techniques [11], 2-D deconvolution 

technques [12],[13] and Least-Squares migration [14]. 

Combination of wave-theory and high-resolution techniques 

like MUSIC has been investigated by several groups 

[15],[16],[17],[18] where the problem in common has been 

to image a sparse set of scatterers. The work presented here 

(in combination with other recent publications [6],[10]) can 

be regarded as an extension of these works to cover the case 

of seismic data. For such data, the scattering contributions 

are not sparse and reflections are major information carriers. 

The key to success has been to introduce a windowed-

MUSIC approach to imaging. This ensures that the sparsity 

condition is fulfilled. The idea of window-steered MUSIC 

was first investigated by [4]. However, in this earlier the 

area of application was not within seismic imaging but 

velocity analysis.  
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