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ABSTRACT

The goal of this work is to provide a brief overview of some
recent advances in the field of seismic signal processing. In
particular, we shall focus on tasks such as multiple attenua-
tion and coherent noise elimination, paying special attention
to the application of signal separation methods that are able
to take into account prior information such as sparsity, which
is ubiquitous in reflection seismic. In addition, we briefly re-
view the application of signal transforms, such as wavelets
and curvelets, to process seismic data. This article introduces
the special session “Seismic Signal Processing”, which cov-
ers other applications and methods not discussed here.

Index Terms— Seismic reflection, signal processing, sig-
nal separation, wavelets.

1. INTRODUCTION

A fundamental problem in geophysics is to estimate the prop-
erties of the Earth’s subsurface based on measurements ac-
quired by sensors (geophones or hydrophones) located over
the area to be analyzed. Among the different methods to ac-
complish this task, seismic reflection is the most widespread
and has been intensively applied for hydrocarbon exploration
and investigation of the Earth’s crustal structure [1]. The char-
acterization of the subsurface using seismic reflection tech-
niques is conducted by first generating seismic waves using
controlled active sources in the surface, such as a dynamite
explosion in land acquisition or an air-gun in marine acquisi-
tion. Each realization of these seismic sources is known as a
shot. The interaction between the environment under analysis
and a seismic wave generates reflections that are recorded at
the surface. The recorded wave at a receiver on the surface
is known as a trace. Seismic signal processing can thus be
defined as a set of tools and methods to extract information
about the subsurface from a set of traces.

By sorting the signals acquired by the sensors in a proper
configuration, it is possible to obtain an image that brings
relevant information on the actual Earth’s subsurface. For
instance, the image depicted in Figure 1 is an example of

common-shot gather (CSG), in which each column corre-
sponds to a seismic trace recorded during the same seismic
shot. The abscissa here stands for the position of the sensor
relatively to the shot position; such displacement is known as
offset. Many important parameters related to the subsurface
can be extracted from data gathers like this [1].
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Fig. 1. Example of seismic data arranged in a common-shot
gather.

Typically, the Earth’s interior has a layered structure, in
which each layer has different physical properties. In seismic
reflection, one is mostly interested in the waves that propagate
in the subsurface and are reflected only once at the interface
between the layers, as these reflections carry a direct rela-
tionship with the layer structure. These reflections are called
primaries, for primary reflections, and are visible in the top
part of Figure 1. However, especially in seismic marine ac-
quisitions, seismic waves might bounce several times within
the layers, giving rise to the so-called multiple reflections, or
simply multiples [2]. Multiple reflections need to be properly
attenuated; otherwise they might be mistaken for primaries
during the seismic imaging process, which may be a relevant
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problem for subsequent interpretation by a geologist. In Fig-
ure 1, multiples are visible in the bottom part.

In addition to multiples, there are other seismic events that
interfere with primary reflections. For example, the emitted
seismic wave tends to be diffracted at points along geological
faults. While imaging the diffracted waves is paramount to
build the final image of the subsurface, these same waves are
seen as interferences when performing several seismic pro-
cessing tasks, since most methods assumed that the data con-
tain only reflections. Another example of seismic wave in-
terfering with reflected waves are surface waves [1]. Surface
waves propagate at the interface between the Earth and the air,
and do not bring any useful information about the subsurface
deeper geological layers. Surface waves are typical of land
seismic acquisition, and are characterized by low-frequency
components and very high amplitudes. Consequently, unless
proper signal processing separation methods are adopted, the
reflection events are easily masked by the surface waves.

Classically, the examples of interference mentioned above
are attenuated by applying standard transforms, such as
Radon and f-k transforms (2D Fourier transform) [2, 3],
by using parametric methods [4, 5], or by approaches based
on wave propagation modeling [2]. More recently, however,
research on the area has been focusing on new tools such
as blind source separation (BSS) methods [6, 7]. One inter-
esting aspect concerning the application of BSS to seismic
reflection data is that problems in this area are very often
unsupervised [8], i.e. there are no reference signals, which
matches well with the BSS formulation. Another approach
that has been intensively studied is the application of mul-
tiresolution transforms such as wavelets and curvelets [9].

In view of these interesting perspectives, the motivation
of this paper is to provide a brief overview on the applica-
tion of BSS and more recent transforms to relevant problems
found in seismic reflection. Another goal of this work is to
point out that, besides being an exciting field of application to
BSS methods and novel transforms, seismic signal processing
may also be a tough, and thus inspiring, environment for such
paradigms. It is worth mentioning that our study is by no
means exhaustive; there are other interesting seismic signal
processing methods that will not be discussed in this article.
Some examples are the subjects of the invited papers to the
special session “Seismic Signal Processing”.

2. SOURCE SEPARATION PROBLEMS

In BSS, the goal is to estimate a set of source signals based
only on mixed versions of these sources. Usually, the mixing
system is described by an instantaneous and linear model [7].
Moreover, there are generally only two sources and two mix-
tures in seismic reflection separation problems. In this situa-

tion, the mixtures x1(n) and x2(n) are given by:

x1(n) = a11s1(n) + a12s2(n)

x2(n) = a21s1(n) + a22s2(n),
(1)

where s1(n) and s2(n) correspond to the sources and aij
to the mixing coefficients. The most employed solution to
the BSS problem is based on independent component anal-
ysis (ICA) [7], in which the sources are assumed to be mu-
tually statistically independent. Since the sources’ indepen-
dence property is lost after the mixing system, ICA basically
searches for linear combinations of x1(n) and x2(n) that pro-
vide source estimations that are as independent as possible.
Such a procedure leads to source separation when there is at
most one Gaussian source [10].

The origins of both BSS and ICA date back to the 1980’s
with the seminal work of Hérault, Jutten and Ans [11]. How-
ever, a curious aspect is that the BSS problem was also
sketched in a paper published in the geophysical community.
In 1984, Harlan, Clarebout and Rocca [12], while dealing
with a signal/noise separation problem, proposed a solution
that bears strong resemblance to the well-known ICA ap-
proach based on non-Gaussianity maximization [13]. In the
following, we shall present three examples of source sepa-
ration problem that can benefit from the advances achieved
within the BSS theory.

2.1. Multiple attenuation

An important type of multiple reflection is characterized by
a bounce at the acquisition surface. As this is the interface
between the subsurface and the air, the reflection coefficient
of this bounce is close to one, thus causing a high-amplitude
multiple. These surface-related multiples, which are typi-
cal of marine acquisitions, can be suppressed by using the
surface-related mutiple elimination (SRME) methods [2]. In
short, this method comprises two steps. In the first one (the
prediction step), the goal is to predict the multiples that are
present in the traces. Then, in a second step (the subtraction
step), one estimates a matching filter to remove the contribu-
tion of the multiple predictions from the acquired data. Typ-
ically, a minimum-mean squared error (MMSE) approach is
adopted to adjust the matched filter [2].

More recently, the subtraction step of the SMRE was car-
ried out by BSS [14–16]. In this approach, the sources s1(n)
and s2(n) are given by the primary and multiple reflections,
respectively. The mixtures x1(n) and x2(n) correspond to
the acquired data and the predicted multiples provided in the
prediction step — since this prediction is not perfect, it com-
prises a mixtures of primaries and multiples.

The application of ICA [13] to multiple elimination pro-
vided better results with respect to the classical MMSE so-
lution, especially when primaries and multiples cross each
other [14]. A recent work has shown that the results provided
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by a BSS approach can be further improved by taking into ac-
count the fact that the primaries can be modeled as a sparse
source [17]. Moreover, the results may be further improved if
one considers a better modeling for the mixing process taking
place in this application. Indeed, although previous works as-
sumed linear instantaneous models, the mixing process here
clearly presents dynamical elements which in turn suggests
considering convolutive mixing models [18].

2.2. Separation of reflections and diffractions

As mentioned in the introduction, seismic data contain
diffractions and reflections of the seismic waves. Both carry
valuable information for interpreters; however, they have
to go through different types of processing methods, which
explains the need to separate diffractions and reflections in
seismic data. This is another problem to which blind source
separation can be successfully applied. The BSS formulation
in this case is straighforward: the sources s1(n) and s2(n)
are given by the reflections and diffractions, respectively.
The mixtures can be obtained after stacking1. For instance,
the Common-Reflection-Surface (CRS) [19] stacking method
may be used to provide a conventional stacked section in
which reflections are enhanced, but also to provide a stacked
section mainly composed of diffraction events [20]. These
two stacked sections present residual diffractions and reflec-
tions, respectively, and, thus, can be seen as the mixtures
x1(n) and x2(n) in a BSS formulation.

In the problem of separating reflections and diffractions,
differently from the multiple attenuation problem, the appli-
cation of BSS based on ICA does not provide good results,
being thus necessary to consider prior information other than
statistical independence. In [21], a source extraction method
based on a sparse criterion provided good separation results
both in synthetic and field data.

2.3. Coherent noise elimination

Noise signals that present a particular spatio-temporal struc-
ture often arise in reflection seismic data. A typical example
is a surface wave known as ground roll [1, 22]. This kind
of noise, which is common in land acquisition, is visible in
the top part of Figure 2. The depicted data is a CSG after
the horizontalization2 of the primary reflections. Since the
ground roll traveltime is different than the traveltime of re-
flected events, the ground roll is not horizontalized, and it
appears as the dipping events in Figure 2, that causes inter-
ference with the signal of interest.

A challenge that arises in the separation of ground roll
from primaries is that there is only a single mixture in this

1Stacking is an important step in seismic signal processing and aims at
obtaining an improved image in terms of signal-to-noise ratio.

2This is done by modeling the time that a reflection takes to leave the
source and reach the receiver. With this model, we can correct the data for the
differences in traveltime, so that all reflections appear as horizontal events.

Fig. 2. Example of ground roll.

case: the data itself. Therefore, the classical BSS formula-
tion of (1), which relies on multiplicative models [23], cannot
be employed. Instead, the observed data must be described
through an additive model, i.e. as a superposition of sev-
eral components. BSS in additive models can be tackled by
established matrix decomposition methods such as the ones
based on the singular value decomposition (SVD) [24]. This
approach was further developed in [25], where an extension
of SVD by incorporating an ICA step was proposed, result-
ing in a noticeable performance gain in scenarios where there
are crossing events. Another extension of SVD was consid-
ered in [26]. In these works, the authors have investigated
the application of the recently introduced low-ranking mod-
eling methods, such as the robust principal component anal-
ysis (RPCA) formulation of [27]. The results obtained so far
pointed out that the RPCA can outperform SVD and SVD-
ICA in some scenarios, and can provide a compromise in
terms of separation quality and computational complexity in
other cases.

3. APPLICATION OF TRANSFORMS

The wavelet transform has an interesting story for the signal
processing community, as it is another signal processing tool
that, along with linear prediction, for instance, greatly bene-
fited from the rich interplay between digital signal process-

2383



ing in general and seismic signal processing in particular. In
fact, the wavelet transform was only proposed in its current
form in 1982 [28], due in great part to the work of the geo-
physicist Jean Morlet, who also coined the term wavelet to
describe the functions used in this transform. In this section,
we briefly review some successful applications of wavelets to
some problems in seismic signal processing.

Perhaps the most important wavelet for seismic pro-
cessing is the curvelet transform [29]. As for all wavelets,
curvelets have local characteristics in the frequency domain.
Curvelets, however, are also local in space in a very special
way: they are able to approximate boundaries (discontinu-
ities) in the data using locally linear approximations, as its
frame is formed by elements that are rotations, translations
and dilations of a spatially-local signal. In consequence,
curvelets provide a good match for data which contain lines
or curves, which is exactly what is present in seismic data.

Wavelets have several features that make them uniquely
suited to seismic data processing. Perhaps the most impor-
tant one is that they allow for very sparse representations of
seismic signals. This fact has obvious applications, for in-
stance, in compression [30, 31]: instead of storing the whole
seismic data, we can only store the few wavelet coefficients
that are able to represent the data with the desired accuracy.
Another obvious application is seismic data denoising [32].
In this case, it is assumed that the low-energy wavelet co-
efficients contain very little signal information, representing
mostly the random noise. By ignoring these low-energy com-
ponents, we are thus to a large extent ignoring noise, while
preserving most of the signal information.

In addition to these more traditional applications of
wavelets, the knowledge that the wavelet representation of
the seismic data must be sparse can be exploited for several
different ends. (In fact, sparsity is exploited in several appli-
cations, and can now be considered a very important aspect
of signal processing as a whole [9, 33–36].) One application
is the estimation of missing data in the seismic record, such
as can happen due to cost-cutting reasons or due to failure of
a seismic source or receiver [37]. One example of a seismic
record with missing data can be seen in Figure 1, where at
least five traces do not contain any data. The method for re-
covering the signal at the missing spots follows the principles
of compressive sampling [33]. The fact that seismic signals
have sparse representations in the curvelet domain has also
been exploited for the multiple elimination problem [37, 38].

The fact that the wavelet transform yields a sparse repre-
sentation of the signal has another interesting consequence:
the wavelet coefficients extract most of the redundancy
present in the data, by combining several redundant parts
of the seismic signal into few wavelet coefficients. This
observation can be used to estimate some important parame-
ters associated with the seismic data, such as the zero-offset
trace [31].

Another important class of problems in seismic signal

processing that can benefit from wavelets are the inverse
problems [39]. In fact, the final goal of seismic signal pro-
cessing is an inverse problem: we want to determine a model
of the subsurface given some observations acquired at the
surface. This is an inverse problem in the sense that, given
the model, it is very easy to predict the observations. How-
ever, given the observations, it is very hard to determine the
model. Representing the model using its wavelet coefficients
has been shown to greatly help the solution of the inverse
problem (see, e.g., [40]).

4. CONCLUSIONS

The aim of article was to briefly report some recent advances
achieved in seismic signal processing. We focused on the ap-
plication of BSS methods and wavelet-based transforms to
relevant problems such as that of multiple attenuation. Of
course, due to limited space and to the vast literature in the
field, our work is not a comprehensive survey. However, some
other topics that are relevant to the field will be covered by the
invited papers that will be presented at the special session that
is introduced by the present work.
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