
MAXIMUM ENTROPY HADAMARD SENSING OF SPARSE AND LOCALIZED SIGNALS

Valerio Cambareri 1,2, Riccardo Rovatti 1,2, Gianluca Setti 2,3

1 Department of Electrical, Electronic and Information Engineering, University of Bologna, Italy
2 Advanced Research Center on Electronic Systems, University of Bologna, Italy

3 Engineering Department, University of Ferrara, Italy

ABSTRACT

The quest for optimal sensing matrices is crucial in the design
of efficient Compressed Sensing architectures. In this paper
we propose a maximum entropy criterion for the design of
optimal Hadamard sensing matrices (and similar determinis-
tic ensembles) when the signal being acquired is sparse and
non-white. Since the resulting design strategy entails a com-
binatorial step, we devise a fast evolutionary algorithm to find
sensing matrices that yield high-entropy measurements. Ex-
perimental results exploiting this strategy show quality gains
when performing the recovery of optimally sensed small im-
ages and electrocardiographic signals.

Index Terms— Compressed Sensing, Walsh-Hadamard
Transform, Maximum Entropy Principle, Sensing Matrix De-
sign, Evolutionary Heuristics

1. INTRODUCTION

Compressed Sensing (CS) [1, 2] is a recent sampling paradigm
applicable to signals whose intrinsic dimensionality is con-
siderably smaller than suggested by their Nyquist rate. In
a nutshell, the compressed acquisition process amounts to
mapping the signal being acquired into an undersampled set
of measurements by applying a suitable sensing matrix. Thus,
CS allows one to balance the effort and resources needed to
acquire a signal to its intrinsic dimensionality rather than its
apparent one. This idea has fostered a growing literature pur-
suing the implementation of CS principles in actual sampling
and imaging systems [3, 4].

In doing so, it is natural to expect that the generality of the
theoretical approach may be dropped to meet the constraints
of feasible hardware implementations. An exemplary simpli-
fication in this sense is the assumption that the sensing matrix
applied by the acquisition process is antipodal-valued, i.e., it
lies in {−1,+1}m×n with m < n.

In this paper we investigate CS with antipodal-valued Ha-
damard sensing matrices (i.e., Hadamard sensing) when the
signals being acquired are (a) sparse in a proper basis that is
not necessarily incoherent [5] w.r.t. Hadamard sensing vec-
tors and (b) localized [6], i.e., the random vector (RV) rep-
resenting the signal has non-white covariance matrix. This
theoretical background is summarized in Section 2.

Leveraging on these assumptions, in Section 3 we formu-
late a sensing matrix design criterion motivated by the max-

imum entropy principle [7] with the aim of selecting the op-
timal set of m measurements based on the analysis of their
covariance. Since the exact solution of the resulting selection
problem is NP-hard due to the nature of the maximum en-
tropy sampling problem [8] we introduce a lightweight evo-
lutionary algorithm to generate a pool of candidate sensing
matrices yielding m near-maximum entropy measurements.

The criterion and its heuristic implementation allow us to
devise a strategy for optimal Hadamard sensing, which is ap-
plied to some examples in Section 4. There, the results when
applying our method to CS of small images and of electrocar-
diographic tracks (ECGs) show clear improvements in terms
of signal recovery performances despite the non-minimum
coherence between the sensing matrix and the chosen spar-
sity bases, thus partially overcoming the non-universality of
the Hadamard matrix ensemble.1

1.1. Prior Work

The design of optimal sensing matrices is commonly tackled
in absence of physical constraints [9, 10]. When the sensing
vectors are fixed by the acquisition process this problem is
known as variable density sampling [11, 12] although the a
priori assumptions and objectives are radically different from
our own. Our second-order statistics assumption is a very
mild prior based on previous research on rakeness [6, 13, 14].
It is also worth noting that, independently, the works of Car-
son et al. [15] and Chen et al. [16, 17] address the problem of
optimal sensing matrix design by leveraging on similar princi-
ples (power-constrained mutual information maximization in
the presence of noise) but without the constraint of choosing
the sensing matrix from a deterministic ensemble.

2. THEORETICAL BACKGROUND

2.1. Compressed Sensing with Deterministic Ensembles

The most common formulation of CS [1, 2] is in the discrete
domain, where the signal being acquired is represented by a
set of n samples collected in a vector x ∈ Rn, while the sam-
pling operation is performed by a dimensionality-reducing
sensing matrix Ām×n (m < n) which produces the mea-
surement vector ȳ = Āx ∈ Rm. Since m < n the recovery

1The code to reproduce them is available at https://sites.google.com/site/
ssigprocs/CS/maxenths
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of x from ȳ is an ill-posed problem, whose solution is possi-
ble if there is a sparsity basis or dictionary Dn×nd

, nd ≥ n
such that every signal being acquired can be expressed as
x = Ds, s ∈ Rnd where s is (at least approximately) k-
sparse, i.e., the cardinality ‖s‖0 = | supp (s)| = k.

The original s is then recovered from the undersampled
measurements ȳ = W̄s, W̄ = ĀD by solving the combina-
torial problem s = arg minz∈Rnd ‖z‖0 s.t. ȳ = W̄z (min `0)
which has been relaxed to a vast array of greedy decoding
algorithms [18, Chap. 8]. The recovery quality achieved by
these algorithms depends on Ā, which is safely designed by
following celebrated theoretical guarantees [19, 20] relating
m,n, k and the structure of W̄.

Using these guarantees two suitable hardware-friendly,
antipodal-valued random matrix ensembles emerge: the
random Bernoulli ensemble (RBE) and the partial Hada-
mard ensemble (PHE). The RBE is comprised of matrices
Ā ∈ {−1,+1}m×n having i.i.d. equiprobable antipodal
entries. On the other hand, Ā belonging to the PHE are
constructed by choosing random subsets of rows from the
Hadamard matrix of order n, Hn, n = 2q, q ∈ N. While the
RBE is universal [19] regardless of D, the PHE is considered
suitable for CS only when D = In is the identity.

Deterministic ensembles such as the PHE become of
practical interest when the choice of sensing vectors is fixed
or constrained by the acquisition mechanism. Thus, we as-
sume to be limited to an orthonormal design space of feasible
sensing vectors {aj}n−1j=0 ,aj ∈ Rn collected in the rows of
An×n.2 The sensing matrix, which we now denote AT ,
is constructed by extracting m row vectors from A with
indexes in the subset T = {j0, . . . , jm−1}, |T | = m. In
absence of other assumptions, the

(
n
m

)
possible AT are con-

sidered equally good candidates in the corresponding matrix
ensemble.

A interacts with the columns of D as Wn×nd
= AD,

their relationship being commonly quantified by coherence

[5], i.e., by µ(A,D) = maxj,k
|a†

jdk|
‖aj‖2‖dk‖2 ∈ [n−

1
2 , 1]. Al-

though coherence should be as small as possible, it is sug-
gested [21] that it only needs to be bounded in many cases.
Since the design space is fixed by the properties of the acqui-
sition mechanism and the sparsity basis is set by the nature of
the signal being sampled, this will often be the case in practi-
cal CS applications.

In this paper we explore the Hadamard sensing case,
where A = 1√

n
Hn corresponds to the normalized Walsh-

Hadamard transform [22]. This transform is particularly
suitable to both analog, optical and digital implementa-
tions. Due to its recursive structure it can also be fully
computed by divide and conquer in O(n log2 n) instead of
mn = O(nk log2 n) additions/subtractions.

This appealing low-complexity property drives the idea of
finding optimal Hadamard sensing matrices AT for generic
dictionaries D (here assumed to be orthonormal bases for the
sake of simplicity), noting that AT will exhibit non-minimum
coherence with respect to D 6= In.

2We will denote by ·T the selection of m-cardinality row subsets T in a
matrix/vector and by ·?, ·̂ optimal and approximate values.

2.2. Localized Signals and Correlated Measurements

Standard CS makes no assumption on the statistical prop-
erties of s, thus conforming to a white, worst-case sce-
nario which does not harness the probabilistic structure in
sparse/compressible representations of natural signals [23].

With the aim of exploiting such structure, in the follow-
ing we consider a simple second-order description of the RV
s by its mean µs and non-white covariance matrix Ks =
E[(s − µs)(s − µs)

†]. Such properties are straightforwardly
estimated from available realizations or valid recoveries of s.
In this context the authors in [6] have introduced localization
to quantify the non-whiteness of s as a deviation in the eigen-
values of Ks from the white case with the same energy.

Given a RV s with covariance Ks we acquire it by ap-
plying WT = ATD which yields the RV of measurements
yT = WT s corresponding to subset T . Its covariance
KyT

= WTKsW
†
T will be non-white in general. Thus,

localized RVs s generally imply localized measurements.
As an example, let yT follow a non-white multivari-

ate Gaussian distribution N (0,KyT
). Then its localization

would directly indicate that the acquisition process repre-
sented by WT is not maximizing the quantity of information
embedded in the measurements, since by considering their
differential entropy h(yT ) we have [24, Theorem 9.4.1]

h(yT ) = 1
2 log(2πe)m det KyT

≤ 1
2 log

(
2πe

EyT

m

)m
(1)

which by [24, Theorem 16.8.4] attains the upper bound in (1)
when yT is white for a fixed energy EyT

= tr KyT
.

3. AN OPTIMAL DESIGN CRITERION FOR
HADAMARD SENSING MATRICES

The previous example indicates that the measurements yT
will not achieve the white-case entropy upper bound in (1)
when the original signal is localized and yT are obtained from
sensing matrices AT in the PHE (or similar deterministic en-
sembles). In such a constrained setting and inspired by the
classic maximum entropy principle [7] we aim at finding the
optimal AT in the design space which conveys the maximum
achievable quantity of information in the measurements yT .

3.1. A Maximum Entropy Problem

In general, we are searching for the m-cardinality subset yT?

of the full measurements’ RV y = Ws which attains the max-
imum differential entropy h(yT?), i.e., we solve

T ? = arg max
T⊂[0,n−1]

h(yT ) s.t. |T | = m (2)

In a Gaussian context, let y ∼ N (0,Ky) with Ky =
WKsW

†. Then h(yT ) is given in (1) where KyT
is a

principal minor of Ky corresponding to subset T . Thus (2)
amounts to solving

T ? = arg max
T⊂[0,n−1]

log det KyT
s.t. |T | = m (3)
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More realistically y will only be approximately Gaussian
and substantially depend on the distribution of s, thus requir-
ing the more general solution of (2).

In a distribution-agnostic fashion we choose to solve
problem (3) in its place: while the solution T ? might not
achieve globally maximum entropy, the corrisponding yT?

will be the subset of measurements having least linear pre-
dictability (or equivalently maximum prediction error) from
one another [25, Sec. 2.4.3 and 6.6].

Note that in Section 4 we report reassuring evidence
that natural signals considered in our experiments produce
approximately Gaussian y, thus suggesting that (3) is well-
posed for finding Hadamard sensing vectors that maximize
the measurements’ entropy.

3.2. Heuristic Solution to Optimal Sensing Matrix Design

On the computational side solving (3) amounts to finding
the maximum determinant principal minor KyT? . When
Ky is diagonal this is straightforwardly solved by T ? =
arg maxT⊂[0,n−1] tr KyT

s. t. |T | = m (choosing the m
largest-variance components of y).

When this is not verified (3) is a well-known combinato-
rial problem. In [8] Ko et al. prove its hardness and propose
an exact branch-and-bound algorithm. Since in natural sig-
nals fluctuations in Ks will occur and eventually require an
update in T ? we propose to use a lightweight genetic algo-
rithm [26] to find a heuristic solution.

The evolutionary analogue is obtained by mapping the i-
th subset T(i), |T(i)| = m into a length n, binary-valued chro-
mosome τ(i) = IT(i)

(the indicator function of T(i)), whose
fitness function is simply f(i) = log det KyT(i)

. Since covari-
ance matrices are Hermitian non-negative definite, by using
the Cholesky factorization log det KyT(i)

= 2 log det LT(i)

where LT(i)
is lower triangular. This allows fast and accurate

computation of the i-th fitness f(i) = 2 tr log diag LT(i)
.

The algorithm is implemented as in Proc. 1 for a generic
covariance matrix K and controlled by the global parameters
Ngen (number of generations), Npop (population size at each
generation). We note the use of a warm start by including in
the initial population Ω(0) the element τ(0) = IT(0)

initialized
to the indexes of the m largest variances in K.

At each generation, mating occurs between the Npar =
Npop

3 highest-fitness parent chromosomes such that their
Nchi =

2Npop

3 children are m-cardinality subsets. An eli-
tist policy grants survival to the parent chromosomes until
they are replaced by fitter children. To avoid possible stag-
nation in the population we have introduced common genetic
operators such as one-point random crossover, random muta-
tion with probability Pmut and a final unicity check to avoid
clones in the population.

Thus, the algorithm yields a near-optimal T ? depending
on the chosen parameters, which we use to construct WT? =
AT?D. Setting large (Ngen, Npop) increases the complexity
of this procedure but typically leads to a larger fitness gap
between any random index subset T and the final T ?. More-
over, rather than using a single T ? one may choose T from the

Procedure 1 Evolutionary Heuristic Solution of (3)
Require: Kn×n (covariance matrix), m, Ngen, Npop, Npar, Nchi, Pmut

1: τ(0) = IT(0)
∈ Ω(0), T(0) = argmaxT⊂[0,n−1] tr KT s.t. |T | = m

2: for all τ(i) ∈ Ω(0), i > 0 do {Random initialization}
3: Generate random τ(i) = IT(i)

, T(i) ⊂ [0, n− 1], |T(i)| = m.
4: end for
5: for l = 0 to Ngen − 1 do {Genetic search}
6: for all τ(i) ∈ Ω(l) do {Fitness evaluation}
7: Calculate the fitness f(i) = 2 tr log diag LT(i)

8: end for
9: Sort τ(i) ∈ Ω(l) in descending order w.r.t. their fitness f(i)

10: Ωpar ← {τ(i)}
Npar−1
i=0 {Parents selection}

11: for k = 0 to Nchi − 1 do {Mating phase}
12: Randomly pick τ(i), τ(j) ∈ Ωpar

13: o← random index in [1, n− 1]
14: τ(Npar+k) ←

[
(τ(i))0,...,o−1 (τ(j))o,...,n−1

]
{Crossover}

15: r ← uniform random real in [0, 1]
16: if r < Pmut then {Mutation}
17: Shuffle random (0, 1) pairs in τ(Npar+k)

18: end if
19: if |T(Npar+k)| −m > 0 then {Well-formed check}
20: Remove |T(i)| −m exceeding ones in (τ(Npar+k))o,...,n−1

21: else
22: Add m− |T(Npar+k)| missing ones in (τ(Npar+k))o,...,n−1

23: end if
24: end for
25: Eliminate duplicates and replenish the pool Ω(l+1) {Unicity check}
26: end for
27: return T ? ← supp

(
τ(0)

)
, τ(0) ∈ Ω(Ngen−1)

high-entropy final population Ω(Ngen−1), which we refer to as
the MaxDet pool for the following experimental evaluation.

4. EXPERIMENTS

We choose to assess the near-optimality of the MaxDet pool
against random PHE sensing matrices by observing the recon-
struction signal-to-noise ratio, RSNRdB = 20 log10

‖s‖2
‖ŝ−s‖2

attained by basis pursuit (BP) [27] from the corresponding
measurements yT . The signal classes tested here are natural
images and ECGs taken from public-domain databases. To
efficiently recover these signals by BP we used SPGL1 [28]
while identical results were obtained by linear programming
in GUROBI [29].

The experiments are carried out by following the pro-
posed Hadamard sensing design strategy as summarized in
Proc. 2 with heuristic parameters Ngen = 200, Npop =
50, Pmut = 0.1. Due to the importance of correctly inferring
Ky we note the use of the shrinkage covariance estimator
K̃y, which safely balances the sample covariance matrix
(SCM) K̂y with the same-energy Ey white case. This covari-
ance estimator leads (with suitable ε) to a full-rank K̃y in the
presence of additive measurement noise and from limited or
linearly dependent observations.

Practical applications will also require an update in T ? to
track statistically significant variations in the signal statistics.
This update will be triggered whenever the recovered sparse
coefficients are classified as outliers w.r.t. Ks. However, we
leave the analysis of online updates to future investigations.
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Procedure 2 Optimal Hadamard Sensing of Localized Signals

1: Estimate K̂y and Ey = tr K̂y (either by direct observation or by setting
K̂y = WK̂sW† with K̂s the sparse coefficients’ SCM)

2: Evaluate K̃y = (1− ε)K̂y + ε
Ey√
n

In

3: Solve (3) by running Proc. 1 on K̃y

4: Update the Hadamard sensing matrix AT?

5: loop
6: Acquire yT? = AT?x
7: Recover ŝ by BP from (AT? ,yT? )
8: end loop

4.1. Handwritten digits

The first experiment is carried out on image samples from the
USPS handwritten digits database [30]. We estimate K̂s on
a training set of 2000 images resized to 64× 64 pixel (n =
4096) and with D the two-dimensional discrete cosine basis
(2D-DCT) on which on average k = 467 coefficients repre-
sent 95% of the original signal energy.

To show that the corresponding y can be considered Gaus-
sian, we collect the full Hadamard transform coefficients y for
4000 images in the database and project them on two random
orthonormal directions p′, p′′ ∈ Rn. The resulting empirical
densities of p′, p′′ are reported in Fig. 1a for 32 histogram bins
and fit by standard normal distributions. Albeit with different
variances, p′, p′′ are approximately Gaussian, thus suggesting
that y is also approximately Gaussian.

By running Proc. 2 (1:-4:) with ε = 10−12 we obtain
MaxDet pools Ω(Ngen−1) and near-optimal solutions T ? yield-
ing high-entropy measurements for m = 1024, 1365. For
each of 20 test images, we simulate CS by three sets of sens-
ing matrices: 25 PHE matrices from the MaxDet pool (in-
cluding the optimal AT? ), 25 randomly chosen PHE matrices
and 50 RBE matrices. Then, signal recovery is performed by
BP from these sets of measurements. The results in terms of
average RSNR are reported in Fig. 1f, where measurements
obtained by the MaxDet pool Hadamard sensing matrices out-
perform both randomly selected Hadamard and random Ber-
noulli sensing matrices. Fig. 1b-e illustrate this observable
improvement in terms of typical RSNR performances for a
sample digit in the dataset and m = 1024.

4.2. Electrocardiographic tracks

In this second experiment we illustrate Hadamard sensing of
ECG tracks from the PhysioNet database [31]. K̂s is esti-
mated on a training set of 180 ECG fragments of n = 256
equivalent Nyquist-rate samples and with D the Coiflet-3 or-
thonormal wavelet basis [32], on which on average k = 39
coefficients represent 95% of the original signal energy. Al-
though we omit their histogram, y can also be considered ap-
proximately Gaussian in this case.

Proc. 2 (1:-4:) with ε = 10−12 yields MaxDet pools
Ω(Ngen−1) and near-optimal solutions T ? for m = 64, 85 (a
strongly undersampled setting). Signal recovery is then per-
formed in the same fashion of the first example for 50 sample
ECGs. The results in terms of average RSNR are reported
in Fig. 2d, while Fig.2a-c illustrate the typical RSNR perfor-
mances for a sample ECG in the dataset and m = 85.
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Hist. f̂p′

Hist. f̂p′′

N(0, σ2
p′ )

N(0, σ2
p′′ )

(a) Empirical PDF of p′, p′′ and Gaussian approximation with σ2
p′ =

0.02, σ2
p′′ = 0.13

(b) Original
image, n =
4096 pixel

(c) T? PHE,
RSNR =
36.82 dB

(d) Random
PHE, RSNR =
1.88 dB

(e) RBE,
RSNR =
19.85 dB

m MaxDet pool PHE Random PHE RBE
1024 (n/4) 36.57 1.51 20.63

1365 (bn/3c) 39.63 2.89 26.08

(f) Average RSNRdB over 20 sample images, 25 MaxDet pool PHE,
25 Random PHE and 50 RBE sensing matrices.

Fig. 1: Comparison of PHE and RBE sensing matrices on the USPS hand-
written digits dataset: (a) empirical PDF of p′, p′′ (b)-(e) sample image and
recovery performances for different antipodal-valued sensing matrices and
m = 1024 (f) average signal recovery performances of PHE and RBE sens-
ing matrices.
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(c) RBE, RSNR =
12.85 dB

m MaxDet pool PHE Random PHE RBE
64 (n/4) 15.12 2.68 6.94

85 (bn/3c) 17.20 3.73 11.11

(d) Average RSNRdB over 50 sample ECG tracks, 25 MaxDet pool
PHE, 25 Random PHE and 50 RBE sensing matrices.

Fig. 2: Comparison of PHE and RBE sensing matrices on the PhysioNet
ECG dataset: (a)-(c) sample ECG and its recoveries for different antipodal-
valued sensing matrices and m = 85 (d) average signal recovery perfor-
mances of PHE and RBE sensing matrices.

5. CONCLUSION

We have presented a design criterion to select Hadamard sens-
ing matrices when the signals being acquired by CS are local-
ized, its optimization rationale being the maximization of the
measurements’ entropy in the assumption that they are ap-
proximately Gaussian for most natural signals.

Due to its computational hardness, we have applied a
genetic algorithm to choose near-optimal Hadamard sensing
matrices in the corresponding deterministic ensemble. Exper-
iments on two signal classes have shown that measurements
provided by such matrices yield positive signal recovery per-
formance increments w.r.t. randomly selected matrix designs.
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