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ABSTRACT

In cognitive radio (CR), the problem of limited spectral resources
is solved by enabling unlicensed systems to opportunistically utilize
the unused licensed bands. Compressive Sensing (CS) has been suc-
cessfully applied to alleviate the sampling bottleneck in wideband
spectrum sensing leveraging the sparseness of the signal spectrum
in open-access networks. This has inspired the design of a number
of techniques that identify spectrum holes from sub-Nyquist sam-
ples. However, the existence of interference emanating from low-
regulated transmissions, which cannot be taken into account in the
CS model because of their non-regulated nature, greatly degrades
the identification of licensed activity. Capitalizing on the sparsity
described by licensed users, this paper introduces a feature-based
technique for primary user’s spectrum identification with interfer-
ence immunity which works with a reduced amount of data. The
proposed method detects which channels are occupied by primary
users’ and also identify the primary users transmission powers with-
out ever reconstructing the signals involved. Simulation results show
the effectiveness of the proposed technique for interference suppres-
sion and primary user detection.

1. INTRODUCTION

Cognitive Radio (CR) [1] resolves the problem of limited spectral re-
sources by enabling unlicensed systems to opportunistically utilize
the unused licensed bands. The task of accurately detecting the pres-
ence of licensed user is encompassed in spectrum sensing. Among
the challenges related to spectrum sensing implementation, the most
critical is the need to process very wide bandwidth, which involves
sampling many points on the radio spectrum [2].

Compressive Sensing (CS) [3] has emerged as a promising
signal processing technique to simultaneous sensing and compress-
ing sparse signals thus allowing sampling rates significantly lower
than Nyquist rate. CS has been successfully applied to alleviate
the sampling bottleneck in wideband spectrum sensing leveraging
the sparseness of the signal spectrum in open-access networks [4].
This has inspired the design of a number of techniques that identify
spectrum holes from sub-Nyquist samples [5–8]. These approaches
assume that the received signal can be modeled as a superposition
of a small number of sinusoids contaminated with noise (either
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bounded noise or Gaussian with known power). However, the blind
nature of the Fourier basis impedes discrimination between sources
of received energy. In practical settings, primary signals must be
detected even with the presence of low-regulated transmissions from
secondary systems. The existence of interference emanating from
low-regulated transmissions, which cannot be taken into account in
the CS model because of their non-regulated nature, greatly degrade
the identification of licensed activity [9]. There are few approaches
which successfully mitigate the interference contribution assuming
some prior information about the interference [10, 11]. To the best
of our knowledge, interference mitigation in conjunction with CS
assuming no prior information about the interference has never been
considered in the literature.

This paper presents a feature-based technique for primary user’s
spectrum identification with interference immunity which works
with a reduced amount of data. The spectrum characteristics of
the primary signals, which can be obtained by identifying its trans-
mission technologies, are used as features. The basic strategy is to
compare the a priori known spectral shape of the primary user with
the power spectral density (PSD) of the received signal. To save
us from computing the PSD of the received signal, the compari-
son is made in terms of autocorrelation by means of a correlation
matching. Thus, the occupied channels are directly detected from
the sample autocorrelation matrix avoiding the complete signal re-
construction. We propose the use of an overcomplete dictionary that
contains tuned prototype spectral shapes of the primary user in order
to achieve sparse representation of primary user spectral support.
In essence, the use of an overcomplete dictionary avoids the tradi-
tional channel-by-channel scanning where the multiple patterns are
matched to the received data independently, thus allowing the differ-
ent matched-filters to be applied simultaneously to the compressive
data. Extraction of the primary user frequency locations needs to be
performed based on sparse signal recovery algorithms. The spirit
of the novel interference rejection mechanism lies in preserving the
positive semidefinite character of the difference between the refer-
ence and the sample autocorrelation matrices, which is achieved by
introducing weights to the l1-norm and suppling a new stopping cri-
teria for conventional CS-based iterative reconstruction techniques.

This work extends previous authors’ publications [12,13], where
the sparsity condition was not taken into account in the reconstruc-
tion process.

2. PROBLEM STATEMENT

Our goal is to decide whether a given frequency band is occupied
by a primary user or not based on sub-Nyquist samples of the re-
ceived signal. Let us denote x(t) the wideband signal represent-
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ing the superposition of different primary systems in a CR network.
Some of the channels left idle by primary users may be occupied by
low-regulated transmissions generated by the unlicensed radios. The
non-regulated activity of the spectrum will be denoted as i(t) and
henceforth is considered interference. Let y(t) = x(t) + i(t) + η(t)
be the continuous-time received signal, where η(t) is additive white
Gaussian noise (AWGN), N (0, σ2

η). Signal x(t) is considered to
be a bandlimited sparse multiband signal, i.e., its spectral support is
small relative to the overall signal bandwidth. Assuming that y(t) is
bandlimited to F = [0, fmax], its Nyquist sampling period is given
by T = 1/fmax. The problem of determining weather a given fre-
quency is occupied or not by a licensed radio can be modeled into a
binary hypothesis test,

y(t) =

{
i(t) + w(t) (H0)

x(t) + i(t) + w(t) (H1)
(1)

where (H0) stands for the absence of primary signal and (H1) stands
for the presence of a primary signal. The presence of unknown in-
terference adds additional challenges to the conventional spectrum
sensing problem.

3. COMPRESSIVE SAMPLING

We consider the sub-Nyquist periodic nonuniform sampling strategy
known as multi-coset (MC) sampling [14]. Given the received signal
y(t), the MC sampler samples are obtained at the time instants,

ti(n) = (nL+ ci)T (2)

where L > 0 is a suitable integer, i = 1, 2, . . . , κ and n ∈ Z. The
set {ci} contains κ distinct integers chosen from {0, 1, . . . , L− 1}.
The MC sampling process can be viewed as a classical Nyquist sam-
pling followed by a block that discards all but κ samples in ev-
ery block of L samples periodically. Thus, a sequence or coset of
equally-spaced samples is obtained for each ci. The period of each
one of these sequences is equal to LT . Therefore, one possible im-
plementation consists of κ parallel ADCs, each working uniformly
with period LT .

The complete observation consists of a data record ofNf blocks
of κ non-uniform samples noted as yf . In order to relate the acquired
samples yf with the original Nyquist-sampled signal, let us consider
zf as the f -th block of L uniform Nyquist samples of y(t),

zf =
[
y(tf1 ) . . . y(tfL)

]T
(3)

where tfn = (fL + n)T . Thus, the relation between the Nyquist
samples and the sub-Nyquist samples is given by,

yf = Φzf (4)

where Φ is a matrix that randomly selects κ samples of zf (κ < L).
This matrix Φ is known as sampling matrix and is given by randomly
selecting κ rows of the identity matrix IL.

4. SPECTRAL MATCHING DETECTION

In this paper, the primary user detection problem is approached from
a feature-based perspective. We assume that the spectral shape of the
transmitted primary signal is known a priori at the receiver of a CR.
The spectral shape of linearly modulated signals depends mainly on
the transmission rate and the modulation pulse, which can be analyt-
ically extracted from physical layer standardization of primary ser-
vices. To detect the presence of licensed activity in the spectrum, we

propose to compare the a priori known spectral shape of the primary
user with the power spectral density of the received signal by shift-
ing the reference spectrum over subsequent channel positions. To
save us from computing the power spectral density of the received
signal, the comparison is made in terms of autocorrelation by means
of a correlation matching. Note that if there is interference from
another secondary user, the feature detector would be able to distin-
guish the primary signal from the interfering system. Following the
notation of (4), the sample autocorrelation matrix R̂y ∈ Cκ×κ can
be obtained as,

R̂y =
1

Nf

Nf∑
f=1

yfyHf (5)

In order to obtain the frequency location of each primary user, the
baseband reference autocorrelation Rb (extracted from spectral fea-
tures of the primary user) is modulated by a rank-one matrix formed
by the steering frequency vector at the sensed frequency ω as fol-
lows,

Rc(ω) =
[
Rb � e(ω)eH(ω)

]
(6)

where � denotes the elementwise product of two matrices and
e(ω) =

[
1 ejω . . . ej(L−1)ω

]T
is the steering vector.

According to this notation, the corresponding model for the sam-
ple autocorrelation matrix defined in (5) is given by,

Ry =

K∑
k=1

γ(ωk)ΦRc(ωk)ΦH + Rε (7)

where Rε represents the contribution of the sub-Nyquist-sampled in-
terference and noise autocorrelation matrices and γ(ωk) is the power
level at frequency ωk, which denotes the tentative frequency of the
k-th active primary user.

Based on the previous assumptions, an estimate of the power
level γ can be obtained following a correlation matching framework,

min
p(ω)

Ψ
(

R̂y, p(ω)ΦRc(ω)ΦH
)

(8)

where Ψ (·, ·) is an error function between the two matrices. Note
that the solution to (8) will be clearly a function of the steering fre-
quency ω. Assuming that the proposed correlation matching pro-
cedure only reacts when the reference spectral shape is present, the
resulting estimation will show an sparse structure in the sense that
we will have response only in the frequencies where the reference is
present. This sparse nature can be exploited to avoid the channel by
channel scanning process.

The model in (7) can be conveniently rewritten into a sparse
notation as follows,

ry = kron(Φ,Φ)BSp + rε = Ap + rε (9)

where ry is a κ2 × 1 vector formed by the concatenation of the
columns of Ry . From now on, to clarify notation, the concatena-
tion of columns will be denoted with the operator vec(·). Therefore,
ry = vec(Ry). B contains the spectral information of the primary
signals and is defined as diag(rb) where rb = vec(Rb). Matrix S
defines the frequency scanning grid,

S =
[
s(ω0) s(ω1) · · · s(ωM−1)

]
(10)

where s(ωm) = vec(e(ωm)eH(ωm)). ωm is defined as ωm = ω0 +
m∆ω , m = 0, . . . ,M − 1, where ω0 and ∆ω denote the lowest
frequency in the bandwidth of interest, and the frequency resolution,
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respectively. The variable rε encompasses interference and noise
contribution.

Vector p =
[
p(ω0) p(ω1) · · · p(ωM−1)

]T can be viewed
as the output of an indicator function, whose elements different from
zero correspond to the frequencies where the reference is present.
Moreover, the values different from zero correspond to the power of
each primary user that is present. This is,

p(ωm) =

{
γ(ωk) if ωm = ωk (H1)

0 otherwise (H0)
(11)

Since κ < L, there are infinitely many solutions to the following
problem,

min
p≥0
‖r̂y − Ap‖l2 (12)

Among all the solutions of (12), we are interested in the solu-
tion that meets the following requirements: (1) p must be sparse,
and (2) the solution must not include interference. The interference
immunity is not achieved only with the spectral shape dictionary A
because, although the spectral shapes of the license-holder users are
assumed to be different from that of the opportunistic users, they
might not be orthogonal.

4.1. Enforcing positive semidefinite residual correlation

Correlation matrices are hermitian positive-semidefinite matrices by
definition. The set of autocorrelation matrices is a convex cone [15].
Thus, the difference between R̂y and the compressed frequency-
shifted reference matrix p(ωm)ΦRc(ωm)ΦH must lie in the surface
of the cone too. In other words, the residual matrix must be positive
semi-definite. The problem can be formulated as,

max
p(ωm)≥0

p(ωm)

s.t. R̂y − p(ωm)ΦRc(ωm)ΦH � 0
(13)

and the solution is the maximum eigenvalue of (R̂
−1

y (ΦRc(ωm)ΦH)),
that is,

p(ωm) = λ−1
max(ωm) m = 0, . . . ,M − 1 (14)

Note that the values λ−1
max(ωm) are coarse estimates of the primary

user power. The meaning of (14) is that if the values of p(ωm) are
chosen lower than λ−1

max(ωm), the residual matrix will be a posi-
tive semidefinite matrix. Next, we show how to impose the positive
semidefinite restriction together with the sparsity constraint.

The sparsity restriction is usually imposed by adding a l1-norm
constraint to the optimization problem [16]. Thus, a common re-
striction to impose sparsity in p is ‖p‖l1 ≤ β, where ‖p‖l1 =∑M−1
m=0 |p(ωm)|. The theoretical value of β is the summation of

the primary users’ power, i.e. β =
∑K
k=1 γ(ωk). However, neither

the number of primary users K nor the transmitted power γ(ωk) are
known a priori. In fact, they are unknowns to be determined by the
spectrum sensing mechanisms.

The l1-norm tends to penalized large coefficients to the detri-
ment of smaller coefficients [17]. Weighted l1-norm have been pro-
posed to democratelly penalize nonzero entries. Let us consider the
following weighted l1-norm,

M−1∑
m=0

wm · p(ωm) ≤ α (15)

where w0, . . . , wM−1 are positive weights. Note that the values of
p(ωm) must be greater than or equal to zero and, thus, the absolute

value is removed for simplicity. The value of α depends on the cho-
sen weights. One way to rectify the dependence on magnitude of the
l1-norm is to enforce each product wm · p(ωm) be equal to 1. Thus,
the weights must be estimates of the inverse power corresponding to
the primary users present in the band under scrutiny. Ideally,

w(ωm) =

{
1

γ(ωk)
if ωm = ωk (H1)

0 otherwise (H0)
(16)

Initial estimates of the powers can be obtained from the upperbound
defined in (14),

wm = λmax(ωm) m = 0, . . . ,M − 1 (17)

With the weights defined in (17), the value of α in (15) is ap-
proximately equal to the number of primary users present in the band
under scrutiny, K, which determines the sparsity level of vector p.
However, as mentioned earlier on this section, the value of K is un-
known. The level of sparsity is typically unknown in CS problems
even though it plays a fundamental role in solving the sparse vector
recovery problem. In this paper, sparse reconstruction is performed
using the iterative algorithm known as Weighted Orthogonal Match-
ing Pursuit (WOMP) [18] which provides fast reconstruction with
low computational complexity and is appropriate to the problem at
hand. Since conventional CS assumes sparse signals corrupted by
noise, robust stopping criteria for iterative reconstruction algorithms
are usually based on information about the noise magnitude. Our
model considers noise and interference (both unknown) and, as such,
impedes the application of conventional stopping criteria.

The weights defined in (17) impose the licensed-holder users to
be selected by WOMP before the interference. Interestingly, only
when a licensed-holder user is selected, the weighted l1-norm in-
creases in one with respect to the previous iteration (see (15) and
(17)). Consequently, after K iterations, the weighted l1-norm is
expected to be equal to K and the residual is expected to contain
noise plus interference. We propose to stop the WOMP when the
difference between the present weighted l1-norm and the weighted
l1-norm of the previous iteration does not fall into the following in-
terval,

1− ξdown ≤ ∆
(t)
l1
≤ 1 + ξup (18)

where ∆
(t)
l1

=
∑M−1
m=0 wm · p

(t)(ωm) −
∑M−1
m=0 wm · p

(t−1)(ωm),
with p(t) being the estimated sparse vector at iteration t. The values
of ξdown ∈ [0, 1) and ξup ∈ [0,∞) determine the detector perfor-
mance.

5. SIMULATION RESULTS

The performance of the proposed scheme is evaluated in this section.
The spectral band under scrutiny has bandwidth equal to fmax = 20
MHz. The size of the observation zm is L = 33 samples. The
sampling rates of ym and zm are related through the compression
rate ρ = κ

L
. To strictly focus on the performance behavior due to

compression and remove the effect of insufficient data records, the
size of the compressed observations is forced to be the same for any
compression rate. Therefore, we setM = 2Lδρ−1 where δ is a con-
stant (in the following results δ = 10). Thus, for a high compression
rate, the estimator takes samples for a larger period of time. The
simulation parameters are summarized in Table 1. To test the abil-
ity of the proposed sparse spectral matching technique to properly
label licensed users, we first consider a scenario with two primary
user in the presence of noise and interference. The interference is
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ρ 1 0.76 0.52 0.24
κ 33 25 17 8

M 660 871 1281 2723

Acquisition Time (ms) 1.1 1.4 2.1 4.5

Table 1. Simulation Parameters
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Fig. 1. Primary user detection with sparse spectral matching.

included as a 10 dB carrier at frequency 7.5 MHz. The primary user
is assumed to be a Binary Phase Shift Keying (BPSK) signal with
a rectangular pulse shape and 8 samples per symbol. The SNR of
the desired users are 10 dB and 7 dB, respectively, and their carrier
frequencies are 2.5 MHz and 12.5 MHz, respectively. The spectral
occupancy for this particular example is 0.5 (the primary users are
using half of the available spectrum). The values of ξ are chosen
ξup = 2 and ξdown = 0.5.

Fig. 1 shows the result of the proposed detector for 1000 Monte
Carlo runs for different compression rates. Blue points indicate the
output of the detector, black crosses represent the true primary users
location and the red solid line indicate the interference location.
From Fig. 1 we observe that, in agreement with the Landau’s lower
bound [19], the proposed technique works well until the compres-
sion exceeds the limit given by the spectral occupancy. When the
compression rate surpass ρ = 0.5, the acquisition procedure loses
part of the information, which translates into a degradation of the
detector performance. The results obtained in Fig. 1 can be com-
pared with the performance of the conventional periodogram spec-
tral estimation. To this end, Fig. 2(a) shows the periodogram for the
scenario under consideration for different compression rates. Be-
sides presenting low resolution (becoming worse as the compression
rate decreases), note also that they are not robust to the strong inter-
ference. In contrast, the proposed method provides a clear frequency
and power estimate and makes the interference disappear because of
their feature-based nature.

The interference rejection characteristic is linked to the relia-
bility of the weights, which must provide a coarse estimate of the
inverse transmitted power of the primary users. Fig. 2(b) shows
the inverse of the weights for the scenario under consideration for
different compression rates. As expected, the maximums of the in-
verse weights are located at the frequencies where a primary user is
present and its value coincides with the primary users’ SNR. How-
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ever, the dynamic range of the weights significantly decrease when
the compression rate surpass the limit of ρ = 0.5. High detec-
tion sensibility is a fundamental aspect in spectrum sensing for CR.
To evaluate the probability of detection (Pd) versus SNR we have
run 5000 simulations, each in the presence of the primary user (H1),
and 5000 records of the same length with noise (H0). Fig. 3 shows
the results for a primary user (BPSK) located at 10 MHz, free from
interference, for a fixed probability of false alarm Pfa = 10−3. It
is clear that, even for low compression rates, the proposed sparsity-
based primary user detection approach is able to reliably detect very
low primary transmission. For comparison, we plot in the same fig-
ure the results for the energy detection without noise uncertainty and
the performance of the coarse estimate given by the inverse of the
weights for the same scenario and for ρ = 1. As shown in the fig-
ure, the energy detection and the estimates given by the weights are
much worse than that of the proposed technique.

6. CONCLUSION

This paper introduces a feature-based technique for primary user’s
spectrum identification with interference immunity which considers
CS. Results based on computer simulations were presented, which
showed the effectiveness in primary user detection and proved the in-
terference rejection capabilities of the proposed method. We showed
that the interference immunity is achieve directly applying a candi-
date matching in the raw data domain either considering independent
matchings for each can
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