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ABSTRACT

In this paper, we extend the idea of the seeding matrix design and

introduce the modulated matrix framework for compressed sensing.

The 1-D state evolution equation is derived to track the sample dis-

tortion performance as a function of the signal distribution and the

rescaling matrix. A special example, the two-block matrix, is pre-

sented as a generalization of the hybrid zeroing matrix. The first

order phase transition is further studied to better understand the dy-

namics. With the two-block matrix, exact recovery can be achieved

in the region where the homogeneous Gaussian matrix is not optimal

for the sparse signals. For compressible signals, the reconstruction

quality can also be effectively improved.

Index Terms— Sample distortion function, phase transition,

modulated matrix, block state evolution equation

1. INTRODUCTION

The compressed sensing (CS) problem can be generalized as solving

an underestimated linear system: Given the information of the mea-

surement matrix Φ ∈ R
M×N , M < N and the observation vector

Y = ΦX, the objective is to obtain good estimation of the source

signal X. The reconstruction quality for different choices of Φ and

reconstruction algorithm is quantified using the mean squared error

(MSE) at certain sampling ratio α = M/N , and is bounded by the

sample distortion (SD) function as defined in [1].

Despite the general advantages of the homogeneous Gaussian

matrix, there have recently been a number of studies on tailoring Φ

with the signal distribution and the reconstruction algorithm, aim-

ing for better CS performance. Previously, a hybrid zeroing matrix

was introduced by exploring the convex property of the SD function

[2], [3]. It successfully convexifies the SD function in the low sam-

pling regime, thus improving the reconstruction quality for the com-

pressible signals. Krzakala and colleagues pioneered the use of the

seeding measurement matrix [4]. Designed as the spatially-coupled

block diagonal Gaussian matrix, it can obtain an exact reconstruction

of the sparse signal under a sampling ratio approaching the theoreti-

cal limit.

In this paper, we extend the seeding matrix idea to a simple and

effective design: the modulated matrix. Different from the block

diagonal structure of the seeding matrix, the modulated matrix con-

sists of several M row Gaussian matrices with different variance.

By varying the variance for the sub-matrices, we are essentially

reweighing the signal distribution. In the limit of large system sizes,

we present a 1-D state evolution dynamical system to predict its

performance with the AMP reconstruction algorithm, based on the

work in [5], to complete the modulated matrix framework.
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Inspired by the hybrid zeroing matrix, we considered a special

form of the modulated matrix, the two-block matrix. To better under-

stand the effect of the two-block matrix, we analysed the first order

phase transition (FOPT), as observed in [6], from the state evolution

perspective. The necessary and sufficient condition for signals with-

out FOPT is then derived. For sparse signals, which have a FOPT,

the two-block matrix can break the phase transition limit of the ho-

mogeneous Gaussian matrix and achieve substantially better SD per-

formance. For homogeneous Gaussian systems without FOPT, we

show that the two-block matrix will retain this non-FOPT property.

Setting the rescaling parameter as 0 and 1 for the two-block structure

is empirically optimal.

The rest of the paper is organized as following. The modulated

matrix framework is introduced in Section 2. The two-block ma-

trix is explained in Section 3. Numerical simulation is provided in

Section 4. We finish the paper with conclusion in Section 5.

2. MODULATEDMATRIX FRAMEWORK

2.1. Review of the seeding matrices

Krzakala et al. suggested the seeding matrix design in [4], [5] and

[6]. It was demonstrated both heuristically and numerically that the

seeding matrix is able to reach the fundamental reconstruction limit

for the sparse signal. The measurement matrix Φ is divided into

Lr×Lc blocks with the size of each being Mq×Np, q = 1, · · · , Lr ,

p = 1, · · · , Lc. For each block, the components are drawn i.i.d from

the Gaussian distribution with zero mean and variance Jqp/N .

The MSE behaviour of the seeding matrix with the AMP-based

reconstruction algorithm, i.e. the Bayesian optimal AMP [7] and the

Generalized AMP (GAMP) [8], can be tracked by the state evolution

(SE) equation. Based on the replica analysis, the SE equations for

the seeding matrix form a 2Lc-D dynamical system [5]:
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where E
(t+1)
p is the reconstruction MSE for the pth signal block at

the t + 1 iteration. z ∼ N (0, 1) is independent of x. The function
F (; ) is the non-linear scalar MMSE estimator of x given x+z. The
expectation in (1) is taken with respect to both x and z. The SE equa-

tions provide accurate prediction for the reconstruction performance.

They can also be used to optimize the matrix parameters.
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2.2. Modulated matrices

In this section, we introduced the modulated matrix design, a vari-

ation of the seeding matrix, and derive its SE dynamics. Instead

of dividing both columns and rows of the measurement matrix into

blocks, the modulated matrix ΦM is composed of Lc M-row sub-

matrices Φi ∈ R
M×Ni , i = 1, · · · , Lc, γi = Ni/N and

P

i
Ni =

N . Each consists of i.i.d random elements drawn from the Gaussian

distribution with zero mean and Ji/N variance. Let us define the

rescaling matrix R ∈ R
N×N as:
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0
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where Ii ∈ R
Ni×Ni is the identity matrix. The modulated matrix

is then the product of the homogeneous Gaussian matrix G and the

rescaling matrix:

ΦM = GR (4)

The state evolution for ΦM can be derived as a special case of

the seeding matrix using (1), (2). To be specific, Lr = 1. For each
block, we have:
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The total MSE for each iteration is the average over all blocks:

Ēt =
1

Lc

Lc
X

r=1

Et
r (8)

Now we introduce a rescaled variable τ̂ = Jiτi, which is indepen-

dent of the block index i. The update rule for τ̂ becomes:

τ̂ (t+1) =

P

k
JkγkS(τ̂ t/Jk)

α
(9)

which is the SE equation for the modulated matrices. When the it-

eration of (9) converges to τ̂∗, the MSE at sampling ratio α can be

accurately predicted as

Ē =
1

Lc

X

k

S(
τ̂∗

Jk

) (10)

We can also extend the aforementioned matrix design to the

stochastic setting by introducing a random rescaling parameter J for

each column. That is, Lc = N and J with the distribution p(J). In
the limit of large systems, the SE equation and the distortion predic-

tion become
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where the expectation is calculated with respect to J .
Both the deterministic (9) and stochastic (11) dynamics are de-

scribed by a 1-D SE equation, which is a remarkable feature of the

modulated matrix framework. It makes the analysis and the op-

timization of the modulated matrix much easier than the general

seeded matrices of [4].
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Fig. 1. The schematic plot of three types of SE behaviour to illustrate the

FOPT. The dashline is the baseline ατ t. The solid lines are the SE evolution

ατ (t+1) = S(τ t) for signals with the homogeneous Gaussian matrix. The

number of non-zero intersection points with the baseline varies for different

types of signals.

3. TWO-BLOCKMATRIX DESIGN

We have previously studied the convexity of the SD function and

introduced the hybrid zeroing matrix [2], [3]. It has been illustrated

analytically that in the concave SD region, better performance can

be achieved by setting a portion of the measurement matrix to zero.

Motivated by this design, we consider a simple form of the rescaling

matrix

R̂ =

„

I1 0
0

√
J2I2

«

(13)

We denote the corresponding Φ̂M as the two-block matrix. Note

that setting J2 = 0 and γ1 = α/αc for α < αc with αc being the

critical sampling ratio results in the hybrid zeroing matrix and the

convexified SD function. Here, we consider J2 being non-zero and

without loss of generality assume 0 < J2 < 1. The SE equation and

the distortion equation for Φ̂M become:

τ̂ (t+1) =
1

α
M(τ̂ (t+1)) (14)

=
1

α

»
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Ē = γ1S(τ̂∗) + (1 − γ1)S(
τ̂∗

J2
) (16)

As observed in [6], the performance of the seeding matrix is

highly related to the FOPT property of the source signal. In the

following, we present the condition for signals without FOPT.

3.1. Phase transition analysis

The FOPT is a discontinuous drop of the MSE at a particular sam-

pling ratio in the context of the SD framework. It can be observed for

sparse signals and some signals with a good level of compressibil-

ity. In [6] the authors draw a connection between the SE dynamics

and the potential function, and explained the FOPT by analysing the

behaviour of the local maximas of the potential function. Here, we

studied the phenomenon from the state evolution perspective.

To better illustrate the dynamics, a schematic plot for three typ-

ical types of SE behaviour with the homogeneous Gaussian matrix

is presented in Fig. 1. The actual fixed points development for the
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Fig. 2. Fixed points for the SE evolution τ t+1 = S(τ t)/α with homo-

geneous Gaussian matrix at sampling ratio α = 0.58. For the compress-

ible signal without FOPT, p(x) = 0.4N (x; 0, 5 × 10−3), there is only

one non-zero fixed point τ∗

1 = 0.1283. For the compressible signal with

FOPT, p(x) = 0.4N (x; 0, 5 × 10−4), three non-zero fixed points exist,

τ∗

2,1 = 0.1006, τ∗

2,2 = 0.0167 and τ∗

2,3 = 3.3154 × 10−3.

compressible signal and the sparse signal are shown in Fig. 2 and

Fig. 3, respectively.

For the compressible signal without FOPT, as we gradually in-

crease α, the intersection point of ατ t and S(τ t) decreases contin-
uously to zero as α approaches 1. It leads to a smooth transition

of τ∗ with respect to α, thus a continuous SD curve. For the com-

pressible signal with FOPT, S(τ t) consists of three smooth arcs, as

demonstrated in Fig. 1. For a small α, the SE iteration will always

converge at the largest fix point τ∗

2,1 associated with the first con-

cave arc. As α increases, the baseline will surpass the first two arcs

and intersect with the third one at τ∗

2,3. Because of the existence of

the convex curve between the two concave arcs, we cannot obtain a

smooth transition between τ∗

2,1 and τ∗

2,3, thus the FOPT occurs.

When using the homogeneous Gaussian encoder and the AMP

decoder, sparse signals may also belong to the category of signals

with FOPT, but their SE function behaves slightly differently. As

illustrated in Fig. 1, its S(τ t) consists of a convex and a concave arc
and intersects with the concave curve at fixed points τ∗

3,1 and τ∗

3,2

for some α. Once α is large enough for the two points to merge,

the convergence point τ∗ will suddenly drop to zero as α keeps in-

creasing. A discontinuity of the MSE to zero is expected in the SD

framework.

Thus the necessary and sufficient condition for signals without

FOPT is for any τ∗, the baseline ατ∗ must always lie below the SE

equation between 0 and τ∗. Mathematically speaking, the slope of

the baseline must be less than the gradient of the SE function for any

τ > 0
f(τ∗)

τ∗
< η(τ∗), and η(τ ) =

df(τ )

dτ
(17)

where ατ t+1 = f(τ t) is the general form of the SE equation.

3.2. The two-block matrix effect on phase transition

If the signal has FOPT with the homogeneous Gaussian matrix, the

two-block matrix is able to accelerate the phase transition. With the
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Fig. 3. The fixed points for the SE evolution with both homogeneous

Gaussian matrix and the two-block matrix.The sparse signal is p(x) =

0.4N (x; 0, 1) + 0.6δ(x) and the sampling ratio is α = 0.55. For the ho-

mogeneous matrix, the SE function τ t+1 = S(τ t)/α has two non-zero

fixed points at τ∗

3,1 = 0.1619, τ∗

3,2 = 0.01020. With the two-block matrix

γ1 = 0.847, J2 = 10−3, the SE evolution τ t+1 = M(τ t)/α successfully

removes the spurious fixed points and leads to perfect reconstruction.

proper choice of the rescaling parameter, the spurious fixed points

of the SE equation will be removed so that perfect reconstruction is

achievable. This is shown in Fig. 3 for the sparse signal. For signals

which have no FOPT with the homogeneous Gaussian matrix, the

dynamics of the two-block matrix keeps this property.

Theorem 1. If the SE equation for signals with the homogeneous

Gaussian matrix S(τ ) satisfies the no FOPT condition, then the SE

equation for using the two-block matrix M(τ ) also satisfies the no

FOPT condition.

Proof. To prove the signal does not have FOPT with the two-block

matrix, we only need to check the gradient of M(τ ).

κ(τ ) =
dM(τ )

dτ
(18)

= γ1η(τ ) + (1 − γ1)η

„

τ
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«
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τ
+ (1 − γ1)

J2

τ
S

„

τ

J2

«

(20)

=
M(τ )

τ
(21)

where the inequality is based on the no FOPT condition for the ho-

mogeneous matrix.

3.3. The two-block matrix vs. the seeding matrix

The two-block matrix design is closely related to the seeding matrix

with four sub-matrices. According to [4], the seeding matrix takes

the form:

Φs =

„

G1

√
J2G2√

J1G3 G4

«

(22)

where Gi is the homogeneous Gaussian matrix. For the seeding

matrix to work it requires J1 ≫ J2. If we set J1 = 1/J2, the

2358



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Ratio α

M
S

E

 

 

homogeneous

J2=10
−3

J2=10
−5

J2=10
−8

J2=10
−14

J2=10
−8

 J3=0

lower bound

monte carlo J2=10
−5

monte carlo J2=10
−8

 J3=0

Fig. 4. The normalized SD function for the sparse signal with different

measurement matrix configuration. For two-block matrix, γ1 = α/αc

for α < αc, where αc1 = 0.59 is the perfect reconstruction ratio for

the homogeneous Gaussian matrix. The three-block matrix is the achieved

by convexify the SD function of the two-block matrix with γ1 = α
αc1

,

γ2 = α
αc2

− α
αc1

, γ3 = 1 − γ2 − γ3, where αc2 = 0.45 is the per-

fect reconstruction ratio achieved by the two-block matrix.

two-block matrix Φ̂M turns out to be the rescaled seeded matrix.

Φ̂M =

„
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√
J2G2

G3
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(23)

=

„

I1 0
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√
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«
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where the index matrix Ii has the same number of rows as Gi.

The heuristics for the two-block matrix is that it simply shrinks

a fraction of the signal to be very small. This leaves fewer large co-

efficients which can consequently be recovered through AMP. In the

dynamics when the certainty for large coefficients is small enough,

this acts as noise for the rescaled signal and the two part de-noise

together. Compared to the seeding matrix, the two-block matrix has

a relatively simple 1-D SE dynamics, which makes analytical opti-

mization possible. The potential downside maybe the reduced ro-

bustness to noise.

4. NUMERICAL SIMULATION

In this section we report the theoretical and empirical SD func-

tion with the two-block matrix for both sparse and compress-

ible signals. To derive the empirical SD curves, the sparse sig-

nals were generated according to the Bernoulli-Gaussian model

p(x)
BG

= 0.4N (x; 0, 1) + 0.6δ(x). The compressible signals

were drawn from the two-state Gaussian mixture model p(x)
GM

=
0.4N (x; 0, 1) + 0.6N (x; 0, 0.003), which were motivated from the

statistics of natural images. In all the empirical cases we used signals

of length N = 5000. The distortion performance for each sampling

ratio was averaged over 5000 problem realizations. Throughout, we

assumed a noiseless scenario and used the GAMP algorithm with

true signal distribution for reconstruction.

In Fig. 4, we plotted the average MSE against the sampling ratio

for the sparse signal, under various choices of the rescaling param-

eter J2. As the benchmark, we also showed the SD performance of
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Fig. 5. The normalized SD function for the compressible signal with dif-

ferent measurement matrix configuration. For the two-block matrix, γ1 =

α/αc for α < αc, where αc = 0.63 is the critical sampling ratio for the

homogeneous Gaussian matrix.

the homogeneous Gaussian matrix and the model based bound [3].

With the two- block matrix we can accelerate the FOPT by decreas-

ing J2: the perfect reconstruction ratio is moved from 0.59 to 0.45

using J2 = 10−8. However, further shrinking of J2 does not im-

prove the reconstruction to the optimal limit. We see some non-zero

J2 delivers better SD performance than the hybrid zeroing matrix,

with J2 = 0.
One thing worth noting is that even with the improved perfor-

mance, the two-block matrix still has a concave SD curve up to a

new critical sampling ratio. A further convexified procedure with a

three-block structure can then be easily applied to achieve even bet-

ter reconstruction. In fact, if we introduce multiple Ji, we conjecture

that this approach will tend to the optimal recovery as with the seed-

ing matrix. Note again that for the multi-block matrix structure, the

SE equation is still 1-D. The Monte Carlo simulation implies that for

the finite size problem the SE prediction is accurate.

The SD functions, as well as the achievable model based bound

for the compressible signal are shown in Fig. 5. Similarly to the

sparse signal case, the two-block matrices outperform the homoge-

neous Gaussian matrix up to the critical sampling ratio αc. Also, the

SD performance is better as we decrease J2. We obtained an excel-

lent agreement between the SD prediction and the Monte Carlo sim-

ulation. Empirically, we observed that the optimum weighting for

J2 is zero for the compressible signal without FOPT. This suggests

that without a FOPT the only gains come from the convexification

of the SD function. However, the proof remains an open question.

5. CONCLUSION

The main contribution of this paper is the introduction of the modu-

lated matrix design. With the simple 1-D dynamics and the flexible

rescaling matrix, it provides us a whole range of measurement matrix

designs. As a special case, we understand the advantage and limita-

tion of the two-block matrix based on the analysis of the first order

phase transition. Further work involves parameter optimization and

examination of multi-block modulated matrices. Different rescaling

distribution in the stochastic setting also need to be considered.
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