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ABSTRACT

There has been growing interest in performing signal processing
tasks directly on compressive measurements, e.g. low-dimensional
linear measurements of signals taken with Gaussian random vectors.
In this paper, we present a highly efficient algorithm to recover the
covariance matrix of high-dimensional data from compressive mea-
surements. We show that, as the number of data samples increases,
the eigenvectors (principal components) of the empirical covariance
matrix of a simple matrix-vector multiplication of the compressive
measurements converge to the true principal components of the orig-
inal data. Also, we investigate the perturbation of eigenvalues of the
covariance matrix under random projection of the data to find condi-
tions for approximate recovery of them. Furthermore, we introduce
an important application of our proposed method for efficient estima-
tion of the parameters of Gaussian Mixture Models from compres-
sive measurements. We present experimental results demonstrating
the performance and efficiency of our proposed algorithms.

Index Terms— Random projections, Compressive sensing,
Compressive signal processing, Principal component analysis, Gaus-
sian mixture model

1. INTRODUCTION
The high cost of acquiring and processing high-dimensional data has
motivated the emerging field of compressive sensing (CS) [1, 2, 3].
CS allows us to reconstruct sparse or compressible signals from a
few linear measurements of them, taken with e.g. Gaussian random
vectors, known as compressive measurements. However, the high
computational complexity of reconstructing the original signals has
proven to be a bottleneck of CS for practical applications.

Fortunately, for many applications, e.g. estimation of underlying
parameters of data, feature extraction, and signal classification, we
may be able to avoid expensive signal reconstruction altogether, us-
ing only the partial information embedded in the compressive mea-
surements of data to perform signal processing tasks. Hence, there
have been some attempts to perform signal processing tasks directly
on compressive measurements. For example, in [4], some initial
steps to analyze certain inference problems within the compressed
space have been done. In [5, 6, 7], performance limits of compres-
sive sensing-based classification of signals have been studied. Also,
in [8, 9, 10, 11], various algorithms for learning sparsifying dictio-
naries from the compressive measurements have been proposed.

In this paper, we focus on the problem of performing Principal
Component Analysis (PCA) using the information embedded in the
compressive measurements. PCA is a fundamental tool in data anal-
ysis and statistics that finds the linear subspace that best fits the data.
It is frequently used for dimensionality reduction, feature extraction,
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and as a pre-processing step for classification in many applications
such as face recognition [12, 13, 14]. In [15, 16], it has been shown
that normal PCA on random projections of data, under certain con-
ditions, returns nearly the same result as PCA on the original data.

However, the major drawback of this method is the high compu-
tational complexity of recovering the random projections from the
compressive measurements. Indeed, the complexity of this process
depends heavily on the dimension of original data, which makes it
prohibitively expensive when the data dimension is high.

In this paper, we thus introduce an efficient algorithm that allows
us to perform PCA using the compressive measurements of data. We
will show that, both theoretically and experimentally, when normal
PCA is instead applied to a simple matrix-vector multiplication of
each compressive measurement with the matrix consisting of the ran-
dom vectors, it returns nearly the same result as PCA on the original
data under similar conditions to [15].

Furthermore, we explore an immediate and important applica-
tion of our proposed method to estimate the parameters of Gaussian
Mixture Models (GMMs) from compressive measurements. GMMs
provide powerful tools in signal processing and machine learning
for various applications such as data modeling, classification, seg-
mentation, and a large class of inverse problems [17, 18, 19, 20]. In
[20], an algorithm for learning the parameters of GMMs from com-
pressive measurements is proposed. However, this algorithm is quite
computationally expensive and typically cannot succeed without an
application-specific initialization that is very close to the true solu-
tion. Thus, we are motivated to present an efficient algorithm that
allows us to estimate the parameters of GMMs from the compres-
sive measurements for a wide variety of signals. Its efficiency makes
our proposed framework a contender for important applications such
as model-based clustering of gene expression microarray data [21].

In Section 2, we present the notation and a brief review of prior
work. Section 3 presents two theorems verifying that our proposed
method returns nearly the same result as PCA on the original data.
In Section 4, we explain the application of our proposed method for
estimation of the parameters of GMMs. In Section 5, we show ex-
perimental results on both synthetic and real-world datasets to verify
the performance of our proposed method and its application.

2. NOTATION AND RELATION TO PRIOR WORK
Assume that our original data are centered at x2Rp and {vi}di=12
Rp are the orthonormal principal components (PCs). Then, each data
sample is represented as xi=x+

Pd
j=1 wij�jvj + zi, i=1, . . . , n,

where {wi}ni=1 and {zi}ni=1 are drawn i.i.d. from N (0, Id⇥d) and
N (0, ✏2

p Ip⇥p), respectively. Also, {�i}di=1 are scalar constants re-
flecting the energy of the data in each principal direction such that
�1>�2>. . .>�d>0. The additive term zi allows for some error in
our assumption that the data lie on a d-dimensional subspace of Rp,
and it is easy to see that the signal-to-noise ratio is SNR=

P
j �2

j/✏2.
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We then assume that we have access only to compressive mea-
surements of the original data. More precisely, we take measure-
ment matrices {Ri}ni=12R

p⇥m, m<p, with i.i.d. entries drawn
from N (0, 1

p ), which is widely used in the CS framework. Then,
each compressive measurement yi2Rm is obtained by taking the
inner product of xi with the random vectors comprising the columns
of Ri, i.e. yi=R

T
i xi. As has been noted previously [9, 15], it is

important to consider distinct and multiple measurement matrices
{Ri}ni=1. If we use the same measurement matrix, then we can only
retrieve information within its column space.

In recent work [15, 16], a simple method for recovering the cen-
ter and PCs from the compressive measurements has been proposed.
The projection matrix onto the subspace spanned by the columns
of Ri is Pi=Ri(R

T
i Ri)

�1
R

T
i 2Rp⇥p. The compressive projec-

tion measurement of each xi is then Pixi=Ri(R
T
i Ri)

�1
R

T
i xi=

Ri(R
T
i Ri)

�1
yi . Hence, each Pixi can be recovered directly from

the compressive measurement yi and the measurement matrix Ri

without knowing or estimating the original data sample xi. It has
been shown that, under certain conditions, the center and PCs of
{Pixi}ni=1 converge to the true center and PCs of {xi}ni=1 (up to a
known scaling factor) almost surely as the number of data samples
increases. Also, the eigenvalues are only changed slightly by the
scattering of energy into other directions by the random projections.

The major drawback of this method is the high-computational
complexity of recovering the compressive projection measurements
{Pixi}ni=1 from {yi}ni=1. Indeed, finding Pixi requires calcula-
tion of the inverse of the matrix R

T
i Ri2Rm⇥m, which has com-

putational complexity proportional to m3. For example, for a small
image of size 32 ⇥ 32 pixels, even if we only measure 10% of the
pixels (m/p = 0.1), then m3 ⇡ 106.

In this paper, we thus introduce a more efficient method for re-
covering the center and PCs from the compressive measurements
{yi}ni=1. We will show that when the usual PCA is instead applied
to {Riyi}ni=1, it returns nearly the same result as PCA on the orig-
inal data. This leads to a noticeable speed-up of the method, since
we only need to calculate a matrix-vector multiplication as opposed
to calculating the matrix inversion.

3. EFFICIENT COMPRESSIVE PCA
In this section, we will show that performing PCA on {Riyi}ni=1

recovers the true center (up to a known scaling factor) and PCs of
the original data {xi}ni=1. We will also explain the effect of pa-
rameters of our model on the scattering of energy of each PC into
other directions. Hence, we find the conditions for which we can
approximately recover the true eigenvalues, or equivalently the true
covariance matrix of the data.
Theorem 1. Assume that {Ri}ni=1, {xi}ni=1, and {yi}ni=1 are as
defined in Section 2. Then as the number of samples n ! 1, the
center of {Riyi}ni=1 (scaled by p

m ) converges to the true center of
the original data x almost surely:

lim
n!1

p
m

1
n

nX

i=1

Riyi = x (1)

Proof. This was previously shown in [16].
Lemma 2. Let tk denote the kth column of the matrix RR

T

where R2Rp⇥m is a random matrix with i.i.d. entries drawn from
N (0, 1

p ). Let {ei}pi=12Rp denote the standard basis. If we define
the matrix ⇤k,l,E[tktTl ], 1k, lp, then

⇤k,k =
m
p2

Ip⇥p +

✓
m2 +m

p2

◆
eke

T
k

⇤k,l =
m2

p2
eke

T
l +

m
p2

ele
T
k , k 6= l. (2)

Proof. See Appendix.
Theorem 3. Assume that {Ri}ni=1, {xi}ni=1, and {yi}ni=1 are as
defined in Section 2, where x=0. Then as the number of sam-
ples n!1, the eigenvectors of the empirical covariance matrix of
{Riyi}ni=1 converge to the true eigenvectors of the original data’s
covariance matrix

lim
n!1

p2

(m2 +m)
1
n

nX

i=1

Riyiy
T
i R

T
i = Ctrue + ↵Ip⇥p (3)

where Ctrue , Pd
j=1 �

2
jvjv

T
j is the true underlying covariance

matrix of the data and ↵ ,
Pd

j=1 �2
j

(m+1) + (m+p+1)
(m+1)p ✏2.

Proof. Consider the model for the original data where we have as-
sumed that x=0, x=

Pd
j=1 wj�jvj + z. Since wj , z, and R are

independent with E [wj ]=0, E [z]=0, and E
⇥
w2

j

⇤
=1, we can verify

E
h
RR

T
xx

T
RR

T
i
=

dX

j=1

�2
jE
h
RR

T
vjv

T
j RR

T
i
+E
h
RR

T
zz

T
RR

T
i

=
dX

j=1

�2
jC

(j)
v +C✏ (4)

where we have defined C

(j)
v ,E

⇥
RR

T
vjv

T
j RR

T
⇤

for j=1, . . . , d

and C✏,E
⇥
RR

T
zz

T
RR

T
⇤
. First we compute the covariance ma-

trix C

(j)
v . For simplicity and without loss of generality, we omit the

dependence on j. Consider a PC v=[⌫1, . . . , ⌫p]
T with unit norm:

Cv = E
h
RR

T
vv

T
RR

T
i

(a)
= E

2

4
 

pX

k=1

⌫ktk

! 
pX

l=1

⌫ltl

!T
3

5

=
pX

k=1

⌫2
k⇤k,k +

X

k 6=l

⌫k⌫l⇤k,l
(b)
=

✓
m2 +m

p2

◆
vv

T +
m
p2

Ip⇥p

where in (a) tk is the kth column of RR

T and in (b) we have used
Lemma 2. Hence we have

C

(j)
v =

✓
m2 +m

p2

◆
vjv

T
j +

m
p2

Ip⇥p , j = 1, . . . , d. (5)

Next, we need to find the covariance matrix C✏ induced by the noise.
Assume that z=[z1, . . . , zp]

T , then

C✏ = E
h
RR

T
zz

T
RR

T
i
= E

2

4
 

pX

k=1

zktk

! 
pX

l=1

zltl

!T
3

5

=
pX

k=1

E
⇥
z2k
⇤
⇤k,k +

X

k 6=l

E [zk]E [zl]⇤k,l

=
✏2

p

pX

k=1

⇤k,k =

�
m2 +m(p+ 1)

�

p3
✏2Ip⇥p. (6)

Finally, we substitute the covariance matrices calculated in (5) and
(6) into the equation (4) to find the covariance matrix of the random
projections of data:

E
h
RR

T
xx

T
RR

T
i
=

✓
m2 +m

p2

◆ dX

j=1

�2
jvjv

T
j

+

 
m
p2

dX

j=1

�2
j +

�
m2 +m(p+ 1)

�

p3
✏2
!
Ip⇥p

Hence
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Fig. 1: Variation of the scattering parameter � for (a) varying SNR and
measurement ratios m/p for p=500, (b) varying p and m/p for fixed SNR=3.

✓
p2

m2 +m

◆
E
h
RR

T
xx

T
RR

T
i
= Ctrue + ↵Ip⇥p

where Ctrue , Pd
j=1 �

2
jvjv

T
j and ↵ ,

Pd
j=1 �2

j

(m+1) + (m+p+1)
(m+1)p ✏2.

Theorem 3 then follows from the law of large numbers.

From Theorem 3, we observe that the eigenvectors of our pro-
posed estimator (i.e. PCs) converge to the true eigenvectors. How-
ever, the eigenvalues are changed somewhat to reflect the scattering
of energy into other directions by the random projections as observed
in [15]. We can write ↵ = �(

Pd
j=1 �

2
j ), where we have defined the

scattering parameter �, 1
p⇥m/p+1

�
1 + 1

SNR

�
+1

p⇥
1

SNR . Let us assume
that the total signal power, i.e.

Pd
j=1 �

2
j , is fixed. First, we can see

that when SNR increases, then the scattering parameter � decreases
to a limit. Also, if we assume that p is fixed, then as the measurement
ratio m/p increases, � decreases. This also holds when the measure-
ment ratio m/p is fixed, where in this case as p increases, � decreases.
This is illustrated in Fig. 1. Therefore, in the case that the original
data is high-dimensional, the amount of perturbation of eigenvalues
is negligible even for small measurement ratios.

As a final note, the estimation accuracy of the center and PCs
from the compressive measurements can be improved slightly using
an iterative procedure mentioned in [15]. For example, at each iter-
ation, one PC can be estimated using Theorem 3 and removed from
the compressive measurements by a least-squares estimation.

4. COMPRESSIVE GAUSSIAN MIXTURE MODEL
In this section, we will show that our proposed method can be used
for efficient estimation of the parameters of GMMs from the com-
pressive measurements as well.

We consider the framework for GMMs discussed in [20, 3]. As-
sume that there exist K Gaussian distributions {N (µk,⌃k)}Kk=1

where each data sample xi belongs to only one cluster (the hard
assignment case) with equal probability of each. Given the com-
pressive measurements of data {yi=R

T
i xi}ni=1, our goal is both to

estimate the Gaussian parameters {(µk,⌃k)}Kk=1 and to identify the
Gaussian distribution that each data sample xi belongs to.

We introduce an efficient algorithm, Fast Compressive Expec-
tation Maximization (FC-EM), which is analogous to the classical
Expectation Maximization (EM) algorithm [22, 23, 24]. FC-EM
is an iterative algorithm that, following an initialization, alternates
between two steps (E-step and M-step) to increase the maximum-
likelihood (ML) probability of the compressive measurements.

In [20], Sapiro et al. have proposed an algorithm for this setting.
Their approach recovers the high-dimensional signals from compres-
sive measurements by maximizing the MAP probability given the
compressive measurements. This allows them to then calculate the
empirical mean and covariance matrix for updating the parameters
of each Gaussian cluster as usual. However, we will instead aim to
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Fig. 2: Results for synthetic data. Plot of (a) normalized estimation error
for the center for varying n and m/p, (b) magnitude of the normalized inner
product between the estimated and true PCs for varying m/p and fixed n=
1000, (c) normalized estimation error for the eigenvalues for varying m/p and
fixed n=1000, and (d) magnitude of the normalized inner product between
the estimated and true PCs for varying n and fixed m/p=0.1.

update the parameters of GMMs directly from the compressive mea-
surements without estimating the original data samples. This allows
us to avoid the expensive signal reconstruction step in each iteration
of our proposed FC-EM algorithm.

In the E-step of our proposed algorithm, we assume that the pa-
rameters {(µk,⌃k)}Kk=1 are known. For each yi=R

T
i xi, the likeli-

hood function conditioned on the kth Gaussian cluster p(yi|ci =
k) has the distribution N (RT

i µk,R
T
i ⌃kRi). The ML estimate,

i.e. maximizing over k p(yi|ci = k), is then equivalent to mini-
mizing the Mahalanobis distance [23],

bci = argmin
k

(yi �R

T
i µk)

T (RT
i ⌃kRi)

�1(yi �R

T
i µk) (7)

where bci is the ML estimate of the generating Gaussian cluster for
the ith data sample. Then, in the M-step, given that we have es-
timated the identity of the generating Gaussian cluster ci for each
compressive measurement, we update the mean and covariance ma-
trix of each Gaussian cluster. It is known that the ML estimate of
these parameters is the empirical estimate [23]. Thus, we can use our
method for updating the parameters of each Gaussian cluster. Let us
denote the set of compressive measurements that belong to the kth

cluster by Ik, then cµk = p
m

1
|Ik|

P
i2Ik

R

T
i yi and c⌃k = USU

T ,
where U and S contain the PCs and eigenvalues obtained by Theo-
rem 3 on {yi|i 2 Ik}.

It is well-known that having a reasonable set of initialization pa-
rameters for fitting the GMM is critical [24]. One typical approach
is to use the K-means algorithm [24, 23] as a pre-processing step to
get a set of initialization parameters. This algorithm iteratively par-
titions data into K clusters assigning each data sample to the cluster
with the nearest center in Euclidean distance. We can easily perform
the same algorithm on the compressive measurements for initializa-
tion of our FC-EM.

5. EXPERIMENTAL RESULTS
In this section, we demonstrate the performance of our proposed
method and its application for both synthetic and real-world datasets.
For our first experiment, we synthetically generate data sam-
ples {xi}ni=1 2 R200 with 5 principal components such that
(�1,�2,�3,�4,�5)=(30, 25, 20, 15, 10). We also choose ✏=27.38
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Fig. 3: Results for the Frey Face dataset. Plot of (a) normalized estimation
error for the center, (b) magnitude of the normalized inner product between
the first estimated and true PC, (c) normalized estimation error for the first
eigenvalue, and (d) run-time of each method, for varying measurement ratios
m/p. We see that our proposed method has two orders of magnitude less
computation time in comparison with [15] with nearly the same performance.

such that the SNR=3. Each entry of the center is drawn from the
uniform distribution [0, 10). We then apply our Compressive PCA
to estimate the center, PCs, and eigenvalues. To get a sense of the
average performance, we report the results averaged over 20 inde-
pendent trials. Fig. 2(a) shows the accuracy of the estimated center,
where the error is the distance between the estimated and the true
center normalized by the true center’s norm. We can see that this
error becomes very small for n sufficiently large, even for small
measurement ratios m/p.

Fig. 2(b) shows the magnitude of the normalized inner product
between each estimated and true PC for varying measurement ra-
tios for fixed n=1000. Here, a value of one represents the best
estimate. We can see that our method is able to recover the true
PCs. Fig. 2(c) represents the accuracy of the estimated eigenvalues
for varying measurement ratios for fixed n=1000, where the error

is |�2
true��2

estimated|
�2
true

. As we discussed, when the measurement ra-
tio increases, the estimation error of eigenvalues decreases. Fig. 2(d)
shows the effect of number of data samples n on the performance
of our method. The magnitude of the normalized inner product be-
tween each PC and the corresponding true PC for varying n for fixed
measurement ratio m/p=0.1 is plotted. As we expected, when n in-
creases, the performance of our method goes to 1.

Next, we consider the Frey Face dataset. This is a nice exam-
ple of a potential real-world application of our work. This dataset
includes 1965 images of the face of a single person with different
emotions. It is widely used for evaluating the performance of dimen-
sionality reduction techniques [25]. Each image is 20 ⇥ 28, hence
p=560. We compare the performance of our proposed method with
the previous method [15]. Fig. 3 shows (a) the normalized estimation
error for the center, (b) the magnitude of the normalized inner prod-
uct between the first estimated PC and the true empirical estimate
using the original dataset, (c) the normalized estimation error for the
first eigenvalue, and (d) the run-time of each method respectively,
for varying measurement ratios m/p. We can see that our proposed
method is much more efficient than the previous one in [15]. In fact,
for this example, our method has two orders of magnitude less com-
putation time with nearly the same performance.

Finally, we demonstrate the performance and efficiency of our
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Fig. 4: Results for the USPS dataset. Plot of (a) classification accuracy for
each cluster, (b) magnitude of the normalized inner product between the first
estimated and true PC for each cluster, for varying measurement ratios.

proposed Compressive Gaussian Mixture Model setting for cluster-
ing of signals from the compressive measurements on an example
using the USPS dataset. The USPS dataset contains ten classes
of handwritten digits with size 16 ⇥ 16 (p=256). We consider
three clusters including 3 digits of zero, three, and nine each con-
taining 1100 data samples. We then apply the FC-EM algorithm
both to assign each compressive measurement to one of the clusters
and estimate the parameters of each Gaussian cluster. For initial-
ization, we use K-means on the compressive measurements in m-
dimensional space. We set the number of iterations for our FC-EM
to 5. In Fig. 4(a), we compare classification accuracy for each clus-
ter for varying measurement ratios m/p and for the EM algorithm on
the original data. Also, Fig. 4(b) shows the normalized inner prod-
uct between the first PC of each cluster after performing FC-EM
and the true PC, i.e. the PC obtained by performing PCA on each
class of digits. We see that our proposed approach leads to nearly
the same performance, even for small measurement ratios such as
m/p=0.3. The run-time of our method is (107, 138, 174) seconds
for m/p=(0.1, 0.2, 0.3), where it takes 101 seconds to run the EM
algorithm on the original data. Therefore, we see that the additional
complexity of working with the compressive measurements is negli-
gible in our method, unlike if we had recovered all 3300 signals first
and then performed GMM.

6. CONCLUSIONS
We have presented an efficient algorithm for performing PCA di-
rectly on compressive measurements. In fact, our proposed method
is able to recover the center, and PCs much more efficiently than pre-
vious approaches. Also, we have studied the perturbation of eigen-
values for reliable recovery of them. Finally, we introduced an im-
portant application of our proposed method for estimation of the pa-
rameters of GMMs. We present results on the USPS handwritten
digit dataset which verify that our approach is able to classify this
dataset accurately, even for small measurement ratios.

APPENDIX
Proof of Lemma 2: The kth column of the matrix RR

T has the

form tk=
hPm

j=1 r1jrkj , . . . ,
Pm

j=1 rpjrkj
iT

, where rij,(R)ij .
We compute the entries of ⇤k,k in three cases using E [r]==0,
E
⇥
r2
⇤
= 1

p , and E
⇥
r4
⇤
= 3

p2
[26]: (i) The lth diagonal entry such

that l 6= k: E
h
(
Pm

j=1 rljrkj)
2
i
=
Pm

j=1 E[r
2
lj ]E[r2kj ] = m

p2
.

(ii) The kth diagonal entry: E[(
Pm

j=1 r
2
kj)

2] =
Pm

j=1 E[r
4
kj ] +P

i 6=j E[r
2
kj ]E[r2ki] = m2+2m

p2
. (iii) The off-diagonal entries:

E[(
Pm

j=1 rljrkj)(
Pm

j=1 rl0jrkj)] = 0.
We now compute entries of the matrix ⇤k,l, k 6= l. Using

the same argument, all entries are zero except two: (i) The entry
in the kth row and the lth column: E[(

Pm
j=1 r

2
kj)(

Pm
j=1 r

2
lj)] =

(
Pm

j=1 E[r
2
kj ])(

Pm
j=1 E[r

2
lj ]) = m2

p2
. (ii) The entry in the lth row

and the kth column: E[(
Pm

j=1 rljrkj)
2] = m

p2
. ⇤
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