
ON PARALLELIZABILITY OF STOCHASTIC GRADIENT DESCENT FOR SPEECH DNNS

Frank Seide1, Hao Fu1,2, Jasha Droppo3, Gang Li1, and Dong Yu3

1 Microsoft Research Asia, 5 Danling Street, Haidian District, Beijing 100080, P.R.C.
2 Institute of Microelectronics, Tsinghua University, 10084 Beijing, P.R.C
3 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

{fseide,jdroppo,ganl,dongyu}@microsoft.com, fuhao9202@hotmail.com

ABSTRACT
This paper compares the theoretical efficiency of model-par-
allel and data-parallel distributed stochastic gradient descent
training of DNNs. For a typical Switchboard DNN with 46M
parameters, the results are not pretty: With modern GPUs and
interconnects, model parallelism is optimal with only 3 GPUs
in a single server, while data parallelism with a minibatch size
of 1024 does not even scale to 2 GPUs.

We further show that data-parallel training efficiency can
be improved by increasing the minibatch size (through a com-
bination of AdaGrad and automatic adjustments of learning
rate and minibatch size) and data compression. We arrive at
an estimated possible end-to-end speed-up of 5 times or more.

We do not address issues of robustness to process failure
or other issues that might occur during training, nor of speed
of convergence differences between ASGD and SGD param-
eter update patterns.

1. INTRODUCTION AND RELATED WORK

At present, the best context-dependent deep-neural-network
HMMs, or CD-DNN-HMMs [1, 2], are typically trained pri-
marily with error back-propagation (BP), a form of stochas-
tic gradient descent, or SGD. For production-size models and
corpora, this is a time-consuming task that can take many days
or weeks, even on modern GPGPU hardware.

While DNNs for vision are commonly convolutional with
local connectivity [3, 4], typical DNNs for acoustic modelling
are fully connected between layers. This makes parallelizing
back-propagation over multiple compute nodes inefficient.
E.g., Google’s DistBelief system successfully utilizes 16,000
cores for the ImageNet task through asynchronous SGD [3],
while for a speech model with 42M parameters, a 1,600-core
DistBelief [5] is only marginally faster than a single recent
GPU. [4] achieved a 28-fold speed-up with 64 GPUs for
their best, 1.9B-parameter vision network, while [6] reports a
3.2-times speed-up from ASGD using 4 GPUs for speech.

Unlike, e.g., [7, 8] which factored the network into a hi-
erarchy, or low-rank approximations [9], or ADMM which
cleverly tweaks the objective function for better parallelizabil-
ity [10], we focus in this paper on parallelizing plain no-frills
SGD, through model parallelism and data parallelism.

In earlier work, we attempted to parallelize SGD over
layers—each node (GPU) processed one or more consecutive
layers, where data flowed up and down through the layers, and
gradients only became available at a delay of several mini-
batches. The lower the layer, the larger the delay [11]. That

work showed that such delayed update can in fact still work,
and it motivated an alternative understanding of minibatches
that we present in this paper. Layer parallelism achieved a
3.3-times speed-up on 4 GPUs, but it does not scale beyond
the number of layers, and with a vastly larger output layer,
load balancing is a prohibitive issue.

This paper analyses the upper bound of parallelizability of
SGD using either model parallelism or data parallelism. We
introduce a formalism to estimate the optimal number of com-
pute nodes to maximize the efficiency of computation, using
measured hardware parameters such as computation speed
and data-exchange bandwidth. A direct consequence of this
analysis is that to maximize the efficiency of data parallelism,
one must maximize the minibatch size (while retaining con-
vergence speed). We introduce an approach to do that, and
evaluate its effectiveness on the 309h Switchboard corpus.

The paper is organized as follows. We will first introduce
the formalism in sections 2 and 3. We will then motivate and
introduce our approach to effectively increase the minibatch
size in section 4. Section 5 shows the results for the estimated
optimal number of nodes, as well as runtime measurements
for model parallelism and word-error rates for growing the
minibatch size for data parallelism.

2. TRAINING CONTEXT-DEPENDENT
DEEP-NEURAL-NETWORK HMMS

A deep neural network (DNN) is a conventional multi-layer
perceptron (MLP [12]) with many layers, where training is
commonly initialized by a pretraining algorithm [13, 14, 15].
A CD-DNN-HMM models the posterior probability P (s|o) of
a tied triphone state, or senone s [16, 1], given an observation
vector o. For details, please see, for example, [15].

The best known DNNs to this date are trained using the
common error back-propagation (BP) technique [17]. Even
when other techniques are used, such as the Hessian-free
method [18, 19, 9], BP still often constitutes a significant
portion of their training time.

BP is a form of stochastic gradient descent, which we
want to write in a slightly unusual way as as an iteration over
individual samples (indexed by sample index t) rather than,
as common, over minibatches:

λ(t+1) = λ(t) + ε(t) · ∂Fλ(o(t))
∂λ

∣∣∣∣
λ=λ(τ)

(1)

Here, λ(t) denotes the model at “current” sample index t,

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 235

while λ(τ) is meant to denote a slightly “outdated” model at
index τ ≤ t. It is this model that the partial gradient of the
objective function Fλ for the current sample vector o(t) is
evaluated on. ε(t) is the learning rate at this training stage.

With this, minibatching can be described by defining τ =
t− (tmodN) with minibatch sizeN . I.e., τ is rounded down
to multiples of N . As long as t falls within the same mini-
batch, the formula simply sums up individual frames’ gradi-
ents computed on the same model λ(τ). Note that we define
a minibatch as a sum; and not, as common, as an average. We
account for this by using an N times smaller value for ε.

This notation is useful because more generally, τ < t
means that gradients are computed using a model that is t− τ
samples “outdated.” Any optimal variant of data parallelism
necessarily implies some form of such delayed update—new
samples are processed while results from previous samples
are still being transferred concurrently. A popular variant of
this is asynchronous SGD, or ASGD [5], where τ varies non-
deterministically across model parameters.

Hence, Eq. (1) allows us to understand more complex
forms of delayed updates as something qualitatively similar
to minibatching, and thus we can expect similar convergence
behavior as long as the update delay stays in a similar range.

3. OPTIMALITY

We define a parallel system that is training optimally as one
where computation and data exchange happen concurrently
with perfect overlap; that is, simultaneously saturating the
communcation channel and the processing resources. If the
communication channel is not saturated, then the system
could be improved by parallelizing more. If the processing
resources are not saturated, it could be improved by paral-
lelizing (communicating) less or by processing more data.

If K denotes the number of compute nodes,1 the optimal
number of nodes K̂ is reached when communication and pro-
cessing time are balanced:

Tcalc(K̂) = Tcomm(K̂). (2)

Here Tcalc and Tcomm are the time per minibatch for con-
current per-node calculation and inter-node communica-
tion, respectively.2 Calculation is dominated by 3 large
equal-size matrix products—forward propagation, error back-
propagation, and gradient computation—so without any par-
allelization (K = 1), it takes

Tcalc(1) =
M

f
·
(
3N · ηmbs(N) + C · ηfix

)
(3)

to compute an N -frame minibatch, where M is the number
of model parameters and f the computation speed (FLOPS).

1A node can be defined as a GPU, a CPU core, or a multi-core server.
2Note that our aim is to maintain convergence rate w.r.t. samples pre-

sented to the learning algorithm—that the parallelized version will present
the same number of samples (or do the same number of data passes) un-
til the target model is achieved. It is conceivable that a modification exists
that might slow down convergence speed while allowing for a parallelization
speed-up that more than makes up for it. We do not consider this case here.

The GPU matrix product (SGEMM) is less efficient for
smaller matrices due to caching. Eq. (3) accounts for this by
a “reality factor” ηmbs(N) which denotes the slow-down due
to N being smaller than its optimal value. E.g., for our model
size, ηmbs(256) ≈ 1.4 on a K20X GPU. The subsequent for-
mulas below will contain more such “reality factors.”

Lastly, C counts “fixed cost” steps (AdaGrad accumula-
tion+weighting and momentum+model update: C = 4), and
ηfix is their overhead (e.g. memory latency on GPUs).

We will now derive formulas for Tcalc and Tcomm for two
forms of parallelization: model and data parallelism.

3.1. Model Parallelism

Model parallelism means that model matrices are distributed
over nodes. Each of the K nodes holds and computes a 1/K-
th sub-section of each weight matrix. In forward propagation,
each node takes full-dimension input vectors and computes
partial vectors of 1/K-th that dimension. This takes 1/K-th
of the time. Each node must then send that vector to all other
K − 1 nodes. All this happens in half-batches such that one
half can be computed while the previous half’s data is concur-
rently being transferred (double buffering). Back propagation
has a very similar pattern. For either, we get:

Tcalc(K) =
M

f
·N · 1

K
·
[
ηmbs(

N
2) · ηstrp(K)

]
Tcomm(K) =

Afr · wA
b

·N · K − 1

K
·
[
λblk(

N
K)λconn(K)

]
with Afr denoting the total number of activation parameters
of byte size wA to be passed per minibatch. ηstrp accounts for
a further SGEMM inefficiency due to smaller matrix height,
and λblk for sub-peak data speed due to using suboptimally
small blocks. λconn accounts for peer-to-peer overhead and
connectivity limits, like the number of PCIe lanes. Alto-
gether, the optimal K̂ for forward and back propagation is:

(K̂ − 1) ·
[
λconn(K̂)·λblk(N

K̂
)

ηstrp(K̂)·λblk(N)

]
=

M

Afr · wA
· b
f
·
[
ηmbs(

N
2)

λblk(N)

]
3.2. Data Parallelism

Data parallelism partitions each minibatch across the K
nodes, which compute K sub-gradients, which then must be
aggregated (“all-reduced”) across nodes. The all-reduce op-
eration is of O(1) by applying a similar pattern as for model
parallelism (K steps of K concurrent exchanges of M/K
values) twice (aggregation, redistribution). Again assuming
double-buffering of half-minibatches for concurrency, we get:

Tcalc(K) = 2
M

f

(
3
N

2
· 1
K
· ηmbs(

N
2K) + (C + 1) ηfix

)
Tcomm(K) = 2

M · wM
b

· 2K
K
·
[
λblk(

MwM
K)λconn(K)

]
where wM is the width in bytes of a model parameter (4 for
single-precision floating point). The optimal K̂ is:

K̂ =
N · 3

2
1
f · ηmbs(

N
2K̂

)

wM · 1
b · 2

[
λblk(

MwM
K)λconn(K̂)

]
− 1

f (C + 1) ηfix

236

This reveals two main avenues to increase parallelizablity:
by growingN—maximizing minibatch size— and by decreas-
ing wM—data compression, where the former is limited by
training stability, and the latter is bounded by the fixed cost as
well as accuracy. This paper only explores the former.

Unlike for model parallelism, double-buffering with half-
minibatches changes the model being trained, because the up-
date delay τ (cf. Eq. (1)) is changed from t − (tmodN) to
t − N

2 − (tmod N
2). The delay remains in a similar range,

though, so its convergence behavior should remain similar.

3.2.1. Asynchronous SGD

ASGD [5] is a form of data parallelism, where nodes (“model
replica”) communicate through parameter servers, and pa-
rameters are read and written while being accessed unsyn-
chronized for computation. Thus, individual model param-
eters may be outdated by one iteration, in a non-determistic
fashion. This does not cause detriment due to the linearized
nature of SGD. Rather, it is another form of delayed update.

The above estimate of K̂ applies to ASGD. ASGD allows
for more flexible rounding where K̂ is not an integer. This
can reduce the effective update delay by the order of N/K,
but not more: If it did, one should add another node.

The lesson here is that ASGD does not improve paralleliz-
ability in a fundamental way. If deterministic double-buffered
data parallelism does not scale well, ASGD won’t either.

4. GROWING THE MINIBATCH SIZE

Section 3.2 shows that one approach to maximizing paralleliz-
ability of data parallelism (including ASGD) without affect-
ing convergence speed, is to drive up minibatch size N .

We find that at any point during the training, there is an
upper limit to N (let’s call it the feasible limit), above which
convergence slows notably and eventually fails [11]. Below
the feasible limit, N does not affect convergence speed (as-
suming we do not divide the gradient sum by N , per Eq. (1)).
Luckily, we also observe that the feasible limit is larger for
more mature models, and that a k times increase of the learn-
ing rate can allow for an up to k times larger feasible limit.

This informs our approach to drive up the minibatch size,
which consists of four steps as follows.

First, we implement “AdaGrad” [20], which we found to
lead to more mature models earlier, thus allowing for larger
N . AdaGrad normalizes the components of the gradient
g(t) = ∂Fλ(o(t))/∂λ by their standard deviation over time:

g′i,j(t) = gi,j(t) · (σi,j(t)/σi,j(t))−1

σ2
i,j(t) = h(t) ∗ g2

i,j(t)

where h(t) is a unit-gain first-order low-pass filter (we use a
time constant 2h of data). We gracefully ignore the mean in
the variance calculation. Our version differs from the original
AdaGrad [20] which can be described as h(t) = 1 and im-
plies an undesired 1/t learning-rate schedule (“AdaDec” [21]
addresses this similarly). We also differ in that we normal-
ize the standard deviations σi,j by their per-matrix averages

σi,j . The aim is to keep gradients in a similar numeric range,
hoping to keep previously tuned learning rates valid.

Secondly, we use an automatic method to shrink the
learning rate. Smaller learning rates allow for larger N .
Every 120h of data, we compute frame accuracy on a cross-
validation set. If it grew only slowly, we halve the learning
rate; and if it dropped, we revert the model—fairly standard.

Lastly, we dynamically determine the feasible limit of N :
After every 24h-block of data, we try a range of minibatch
sizes on about 2% of the next block and pick the largest fea-
sible one based on the objective function’s value.

5. EXPERIMENTAL RESULTS

We will provide the optimal K̂ estimates for model and data
parallelism for training a realistic state-of-the-art speech-to-
text transcription system. For model parallelism, we will also
give actual runtime measurements; while for data parallelism,
we will report on an experiment on driving up minibatch size
that aims to inform the design of a future actual optimized
implementation of data parallelism.

The CD-DNN-HMM in this system is trained using the
309-hour Switchboard-I training set [22]. The model has 7-
hidden layer of dimension 2k, and an output dimension of
9304. This results in M = 46M model parameters and Afr =
12k activation values to be propagated per frame in both for-
ward and back-propagation.

Our main hardware is an AMAX ServMax equipped with
8 NVidia Tesla K20X GPU cards. For these, we measure f =
976 Gop/s for our model when using large minibatches (16k).
N = 1024 is only marginally slower, but the slow-down from
1024 to 512 is a noticeable ηmbs(512)/ηmbs(1024) = 1.2.
The fixed cost is M/f · C ηfix = 18.2 ms.

Our standard training uses a minibatch size of N = 1024
(except for the first 24h, where we set N = 256 to ensure
convergence). Single-channel peer-to-peer bandwidth when
exchanging activations in chunks of 1024 frames was mea-
sured to b/λblk(1024) = 4.83 GB/s (PCIe 2.0 maximum: 6
GB/s). With our communication structure, the GPU hardware
allows for fully concurrent data transfers, but is limited by the
PCIe bus’ 40 lanes in our 8-GPU server. We find the aggre-
gate bandwidth to fluctuate strongly and max out at about 14
GB/s for 4 GPUs. Reliably, for 3 GPUs, we observe a slow-
down of λconn = 2.

5.1. Model Parallelism

Based on the above, we can estimate the optimal number of
nodes. It is not pretty: K̂ = 3.3. Model parallelism for a
46M-parameter DNN cannot benefit from more than 3 GPUs.
Accounting for the slow-down from smaller matrices (strip-
ing, double-buffering), the estimated speed-up is 2.5.

Reality is not too far off: Table 1 shows processing speed
in frames per second (fps) of an optimized, double-buffered
implementation, for both the entire end-to-end BP (including
data loading, objective-function tracking, etc.) and broken
out by the three main steps, forward propagation, error back-
propagation, and model-parameter update (which requires no
data exchange). We see that with three K20X GPUs, we can

237

Table 1. Processing speed in frames (=samples) per second
for model parallelism on two kinds of GPUs. Using more than
3 GPUs did not lead to a further speed-up.

speed [fps] (speed-up)
configuration 1 GPU 2 GPUs 3 GPUs
K20X, end-to-end 6861 10722 12311 (1.8×)
forward prop only 21248 31351 39565 (1.9×)
error back-prop only 25966 33211 36720 (1.4×)
param update only 18027 32787 43233 (2.4×)

C2075, end-to-end 2236 3906 -

achieve a speed-up from 6861 to 12311 fps, a factor of 1.8
(60% efficiency). Using 4 GPUs is slower; the PCIe data-
transfer concurrency does not hold up. Using slower C2075
GPUs in a desktop computer, the speed-up for two is 1.8.

5.2. Data Parallelism

Using the standard minibatch size of N = 1024, the situation
is even bleaker for data parallelism: The optimal number of
nodes is K̂ ≈ 1.5. ForN = 4096, K̂ increases only to 2 (lim-
ited by PCIe’s λconn ≈ 2), and to 6 for N = 16k (assuming
λconn ≈ 3), with expected speed-ups of 1.1 and 5.1, respec-
tively. Assuming moderate data compression to 8-bit values
would raise K̂ to 5 and 12 with estimated speed-ups of 4 and
10.3, respectively. A critical factor is λconn, which, in our ex-
perience so far, can behave unexpectedly. We do not have an
optimized implementation of data parallelism at this point in
time, so we cannot provide actual time measurements.

We can, however, evaluate whether our method of Section
4 even makes such minibatch sizes feasible, to inform a future
implementation. We use a non-parallelized full-minibatch up-
date as a proxy, which has an update delay and thus conver-
gence behavior that should be similar to an actual double-
buffered half-minibatch update.

Table 2 shows the progression of word-error rates (WERs)
over training data passes for speaker-independent recognition
of the NIST 2000 Hub5 evaluation set (SWB part). The rows
of small numbers show learning-rate (LR) profiles, as the fac-
tor (range) by which the original LR ε(0) = 1/320 per frame
was reduced in that data pass. The last row also includes auto-
adjusted minibatch sizes N (as the inverse average within a
pass, very roughly proportional to the estimated speed-up).

First, we see that AdaGrad leads to somewhat faster con-
vergence, and reaches the optimum one data pass earlier. Sec-
ondly, our standard LR profile—cut LR after 3 data passes
sharply by a factor of 40 [2]—does not lead to the best possi-
ble accuracy; automatic LR control reduces WER from 15.8
to 15.3%. Lastly, automatic adjustment of the minibatch size
N using the proposed method allows for nearly the same con-
vergence while driving the minibatch size up to a maximum
of 181k. For the first four data passes, which nearly reach
the final accuracy, N ranges from 3.6k to 14.3k, which would
allow for an end-to-end speed-up of about 5 (based on the
above 4k/16k-minibatch estimates). Parallelism for the later
data passes (N = 87k and above) will be limited by the real-
izable bandwidth across servers, and also the fixed cost.

Table 2. Word error rates, learning-rate profiles, and mini-
batch growth over data passes (various training setups).

setup \ data passes: 1 2 3 4 5 6 7
baseline WER[%] 19.6 17.8 16.9 16.1 16.1 15.9 16.0

ε(t) = ε(0)/... 1 1 1 40 40 40 40

+ AdaGrad 18.4 17.3 17.1 16.3 15.8 15.9 15.7
1 1 1 40 40 40 40

+ automatic LR control 17.6 16.7 16.1 15.6 15.3 15.3 15.3
1..2 2 2..4 4..16 16..64 128..512 ..2048

+ automatic N adjustment 19.7 17.1 16.1 15.5 15.6 15.5 15.4
1 1 1..2 2..4 4..8 16..64 ..256

N (t) 3.6k 4k 6.8k 14.3k 87k 181k 181k

5.3. Can a CPU-based farm beat a GPU-based one?

Probably not. While slower computation speed would allow
for proportionally greater parallelism at the same communi-
cation latency, parallelization gains will be limited by “reality
factors” due to using smaller sub-batch sizes. The SGEMM
performance of a 16-CPU core machine using Intel’s Math
Kernel Library was measured to be nearly 5 times worse than
that of a single K20X GPU [23]—we’d need 5 times smaller
stripes to make up for it. Moreover, at slower computation
speed, the fixed cost may become a limiting factor.

Indeed, [5] reports that for speech DNNs of similar size
as ours, the CPU-based ASGD system maxes out at a 5.8-
times combined speed-up from model and data parallelism on
80 20-CPU core nodes (while the same system successfully
harnesses 1,000 16-core nodes for ImageNet [3]).

6. CONCLUSION

We compared the theoretical efficiency of distributed stochas-
tic-gradient descent training of DNNs, for model and data par-
allelism of a typical Switchboard DNN with 46M parameters.
For this fully connected model, parallelization quickly runs
into the bandwidth bottleneck: For model parallelism, there
is no benefit to use more than a meager 3 GPUs; and data par-
allelism shows no benefit even from 2 GPUs as long as the
standard minibatch size of 1024 is used.

However, combining AdaGrad, automatic adjustment of
learning rate and minibatch size, and data compression may
enable designs with end-to-end speed-ups of above 5. A suit-
able server farm would consist of few servers with many high-
end GPUs and high, maximally concurrent peer-to-peer band-
width. Our next step will be to actually realize such a system.

We also find that multi-core CPU farms are not likely to
beat GPU farms; ASGD does not fundamentally change that.

Overall, we find that dramatic speed-ups from applying
model and/or data parallelism to standard SGD are not to be
expected for speech-scale DNNs. Any significant speed-up
will have to come from a more fundamental change of the
training algorithm that allows for greater parallelizability by
its nature.

7. ACKNOWLEDGEMENTS

We’d like to thank John Langford for helpful feedback.

238

8. REFERENCES

[1] D. Yu, L. Deng, and G. Dahl, “Roles of Pretraining and Fine-
Tuning in Context-Dependent DNN-HMMs for Real-World
Speech Recognition,” NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, Dec. 2010.

[2] F. Seide, G. Li, and D. Yu, “Conversational Speech Transcrip-
tion Using Context-Dependent Deep Neural Networks,” Inter-
speech, 2011.

[3] Q.-V. Le, M.-A. Ranzato, R. Monga, M. Devin, K. Chen,
G.-S. Corrado, J. Dean, and A.-Y. Ng, “Building High-Level
Features Using Large Scale Unsupervised Learning,” ICML,
2012.

[4] A. Coates, B. Huval, T. Wang, D.-J. Wu, and A.-Y. Ng, “Deep
Learning with COTS HPC Systems,” ICML, 2013.

[5] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M.-A. Ranzato, A. Senior, P. Tucker,
K. Yang, A. Y. Ng, “Large Scale Distributed Deep Networks,”
NIPS, 2012.

[6] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu, “Asyn-
chronous Stochastic Gradient Descent for DNN Training,”
ICASSP, 2013.

[7] H. Franco et al., “Context-Dependent Connectionist Proba-
bilty Estimatation in a Hybrid Hidden Markov Model–Neural
Net Speech Recognition System,” Computer Speech and Lan-
guage, vol. 8, pp. 211–222, 1994.

[8] P. Zhou, C. Liu, Q. Liu, L. Dai, and H. Jiang, “A Cluster-Based
Multiple Deep Neural Networks Method for Large Vocabulary
Continuous Speech Recognition,” ICASSP, 2013.

[9] T.-N. Sainath, B. Kingsbury, H. Soltau, and B. Ramabhadran,
“Optimization Techniques to Improve Training Speed of Deep
Neural Networks for Large Speech Tasks,” IEEE Trans. on
Audio, Speech, and Language Processing, Vol. 21, No. 11,
Nov. 2013.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed Optimization and Statistical Learning via the Alter-
nating Direction Method of Multipliers,” in Foundations and
Trends in Machine Learning, Vol. 3, No. 1 (2010) 1–122.

[11] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide, “Pipelined
Back-Propagation for Context-Dependent Deep Neural Net-
works,” Interspeech, 2012.

[12] F. Rosenblatt, “Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms”, Spartan Books, Wash. DC,
1961.

[13] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent
Pre-Trained Deep Neural Networks for Large Vocabulary
Speech Recognition,” IEEE Trans. Speech and Audio Proc.,
Special Issue on Deep Learning for Speech and Language Pro-
cessing, 2011.

[14] G. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algo-
rithm for Deep Belief Nets”, Neural Computation, vol. 18,
pp. 1527–1554, 2006.

[15] F. Seide, G. Li, X. Chen, and D. Yu, “Feature Engineering in
Context-Dependent Deep Neural Networks for Conversational
Speech Transcription,” Proc. ASRU, Waikoloa Village, 2011.

[16] B. Kingsbury, “Lattice-based optimization of sequence clas-
sification criteria for neural-network acoustic modeling,”
ICASSP, 2009.

[17] D. Rumelhart, G. Hinton, and R. Williams, “Learning Rep-
resentations By Back-Propagating Errors,” Nature, vol. 323,
Oct. 1986.

[18] J. Martens, “Deep learning via Hessian-free optimization,”
ICML, 2010.

[19] B. Kingsbury, T. Sainath, and H. Soltau, “Scalable Minimum
Bayes Risk Training of Deep Neural Network Acoustic Mod-
els Using Distributed Hessian-free Optimization,” Interspeech,
2012.

[20] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradi-
ent Methods for Online Learning and Stochastic Optimiza-
tion,” http://www.cs.berkeley.edu/∼jduchi/projects/DuchiHa-
Si10.pdf, 2010.

[21] A. Senior, G. Heigold, M.-A. Ranzato, K. Yang, “An Empir-
ical Study of Learning Rates in Deep Neural Networks for
Speech Recognition,” ICASSP, 2013.

[22] J. Godfrey and E. Holliman, “Switchboard-1 Release 2,” Lin-
guistic Data Consortium, Philadelphia, 1997.

[23] W. Minjie et al., “Minerva: A Scalable and Highly Effi-
cient Training Platform for Deep Learning,” under submission,
2013.

239

