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ABSTRACT

We present a new method to augment the correct transcript
from automatic speech recognition (ASR) output containing
multiple hypotheses. The error-prone ASR process is taken
as black box and modeled as a noisy channel on phoneme
level. The probabilities of the individual phoneme errors are
assigned according to phonetic confusability. We score po-
tential candidate hypotheses by their posterior probability of
being the channel input given the competing ASR hypothe-
ses as observed output. The resulting scores provide useful
information not included in traditional confidence measures.

We investigated the usefulness of the method for rescor-
ing, re-ranking and word error detection. The method alone
is not powerful enough to improve the recognition results, but
by employing a decision tree classifier it is possible to isolate
cases where the method works very well. Our results show
that the combination with other knowledge sources and post-
processing techniques can lead to promising improvements.

Index Terms— Automatic speech recognition, error
modeling, confidence, re-ranking, error detection

1. INTRODUCTION

As it is not possible for automatic speech recognizers (ASR)
to completely disambiguate the input solely with the knowl-
edge that is accessible during the decoding phase, most sys-
tems provide alternative hypotheses in the form of n-best lists
or word lattices. To increase the reliability, it is beneficial to
apply post-processing techniques that can pick the correct hy-
pothesis out of the alternatives provided by the decoder or to
detect erroneous parts when none of the alternatives is correct.

Numerous approaches have been proposed to rescore [1]
or re-rank recognition hypotheses both on utterance [2] and
word level [3] and to detect word errors within recognition
results [4, 5]. Most of these techniques use numeric and nom-
inal features such as ASR confidence values and POS tags to
train a classifier or to calculate joint confidence values that
integrate different kinds of knowledge.

Nevertheless, humans show better performance in detect-
ing ASR errors. Skantze [5] observed that human subjects
benefit from information contained in n-best lists. It though
remained unclear how this information can be formalized.

It seems likely that, to some extent, humans employ
their experience about similar-sounding and easily confusable
words to reconstruct the original utterance from the sound
that is roughly reflected by the words in an n-best list (cf.
also [6]). We tried to reproduce this assumed process with
a formal model that integrates knowledge about phonetically
similar sounds and specific error characteristics of the speech
recognizer as well as phonetic information distributed over
multiple competing hypotheses in n-best lists or word lattices.

2. THE METHOD

The method uses information about phonetic similarity of
competing ASR hypotheses (as can be found in n-best lists,
word lattices or in systems that employ parallel recognizers)
and knowledge about acoustic confusability to score potential
hypotheses according to their posterior probability of being
the correct transcript. Instead of using the posterior probabil-
ity computed by the speech recognizer we use the posterior
probability of the error model proposed in the following.

We assume that the ASR process randomly transforms
the reference transcript r̂ of the input speech signal to a list
of competing hypotheses H = h1 . . . hn with probability
P (h1 . . . hn|r̂). Bayes’ rule gives the posterior probability of
a potential reference transcript r given the observed hypothe-
ses:

P (r|h1 . . . hn) =
P (h1 . . . hn|r)P (r)

P (h1 . . . hn)
For simplifying reasons, we assume that the alternative hy-
potheses are independent of each other (Naive Bayes assump-
tion), i.e. we imagine that the probabilistic ASR process had
been run n times with the same input. The posterior prob-
ability factorizes into a language model score LH(r) and a
confusability score CH(r):

P (r|H) = P (r)
P (h1)·...·P (hn)

·
n∏
i=1

P (hi|r) = LH(r)·CH(r) (1)

LH(r) can be estimated with a language model. The proba-
bilities P (hi|r) denote how likely the recognizer understands
hi whenever r is spoken. Abstracting from the actual acous-
tic realization of the speech input, they represent knowledge
about general confusability. The notion of confusability can
be adapted to the characteristics of a specific speech recog-
nizer, as described in the following subsections.
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2.1. The Noisy Channel Model

The noisy channel model is a well-known framework used for
error correction, particularly spelling correction [7]. It com-
prises the imagination that the input is transmitted through a
noisy channel with randomly occurring independent manipu-
lations of items on a certain sub-level. In the following, we
define phonemes to be the basic units that are manipulated
independently (though other segmental units like syllables or
words could be used as well). The set of potential manip-
ulating operations involved in ASR errors is limited to sub-
stitutions, insertions and deletions1. We further assume that
every input and output phoneme can be affected by only one
operation. For clarity reasons, we model the preserving of a
phoneme as substitution with itself. Thus we determine that
every input/output phoneme undergoes exactly one operation.

Given a phonetic alphabet P and two phoneme strings
R = R1...Rl and H = H1...Hm representing the standard
pronunciation of r and h, the probabilities in CH(r) factorize
as

P (h|r) = P (H|R) =
∑

e∈ER→H

P (e|R) (2)

with e iterating over all operation sequences that transfer R
into H using substitutions, deletions and insertions. This is
compliant with the common notion of the edit distance prob-
lem which can be efficiently solved by dynamic programming
[8]. This algorithm can be easily adopted to calculate the sum
in equation 2 by using the following definitions:

P (H|R) = α(l,m) · (1− pins)
α(0, 0) = 1
α(i, j) = α(i− 1, j − 1) · P (sub(Ri,Hj)) (3)

+ α(i− 1, j) · P (del(Ri))
+ α(i, j − 1) · P (ins(Hj))

A variant of the method does not calculate the overall proba-
bility of all possible operation sequences but only regards the
most probable operation sequence and uses its probability in-
stead. This can be achieved by the slight modification that the
sum in equation 2 and 3 is replaced by a maximum function.
This variant is analogue to the Viterbi algorithm for HMMs
which is commonly used by speech decoders to approximate
the overall probability as both probabilities have been proven
to be highly correlated for speech. We thus expect that such a
correlation is also given for the confusability of hypotheses.

The probabilities of the individual phoneme errors in
equation 3 can be provided by a phoneme error model and can
be made dependent on the current or preceding phonemes.

2.2. Phoneme Error Models

The probabilities can be estimated from data consisting of
pairs (r, h) with a reference transcript r and a hypothesis
h. The first step is to make a phoneme alignment between
the phonetical representations of r and h that indicates which

1Methathesis (segment order errors) known from humans can be ruled out
since the sequential frame order is preserved during the whole ASR process.

phonemes are kept, which are inserted or deleted and which
are replaced by which one. This is well known as the above
mentioned edit distance problem [8]. The objective function
is defined by cost weights for the individual edit operations.
We explored two methods to determine the initial alignment:
UNIFORM: The weights are set to 4 for any non-identical

substitution and to 3 for deletions and insertions. This is a
common configuration for speech alignments (cf. [9]).

FEATURE: The phonemes are modeled by a set of individual
phonological features. The weights for the edit operations
are defined as a function of the number of features that are
affected by the operation. This approach has been applied
successfully to speech alignment before (see e.g. [10]).

In a second step, the data can be used to estimate the proba-
bilities of interest by the corresponding counts2 as follows3:

P (sub(Ri,Hj)) = (1− pins)#(Ri,Hj)
#(Ri,∗)

P (del(Ri)) = (1− pins)#(Ri,ε)
#(Ri,∗)

P (ins(Hj)) = pins
#(ε,Hj)
#(ε,∗)

pins = #(ε,∗)
#(∗,∗)

The resulting probabilistic phoneme error models supply the
probabilities of the noisy channel for the algorithm proposed
in 2.1 (Eq. 3). By using the Viterbi-like variant of the algo-
rithm, it is possible to refine the initial alignment and hence
the error model. By iterative application of these refinement
steps, following the paradigm of the EM-algorithm, we gen-
erated two further models UNIFORM-EM and FEATURE-EM.

2.3. Normalization

The scores defined in equation 1 heavily depend on the num-
ber n of competing hypotheses and the length of the strings.
To make the values comparable between different utterances
they are normalized as follows:

LH(r) =
P (r)1/len(r)

(P (h1)1/len(h1) · . . . · P (hn)1/len(hn))1/n

CH(r) =

n∏
i=1

P (hi|r)1/(kin) ; SH(r) = LH(r) · CH(r)

with ki being the number of edit operations for the most prob-
able operation sequence to transduce r into hi.

3. RELATED WORK

Ristad [11] presented a stochastic model for the adaptation of
string-edit distance to data. It is compatible with UNIFORM-
EM (see 2.2) and applies the same EM-estimation strategy.

Kemp/Schaaf [12] and Mangu/Brill [13] proposed meth-
ods for calculating confidence scores from word lattices. Both

2It can happen that multiple alignments have the same overall cost value.
In this case, we took all for the estimation step, but the corresponding counts
were weighted by 1/k with k being the number of alternative alignments.

3In deviation from the description, we applied a simple smoothing tech-
nique to avoid null probabilities for unseen operations and a back-off estima-
tion for substitutions of phonemes that were never substituted in the data.
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follow the idea of hypothesis density which is implicit in our
model as well. However, their approaches exploit ASR pos-
terior probabilities, or entropy measures, respectively, while
the method described here focusses on phonetic similarity.

In section 5.2, we demonstrate how our method can be ap-
plied to ASR system combination. A well-known technique
for system combination is ROVER [14] which constructs
word transition networks from multiple-recognizer outputs
and chooses the best path by a voting procedure. Our method
uses phonetic similarity as an additional information source.

The work most similar to the approach described here
is the ASR post-processing technique of Ringger/Allen [15].
Like our model, it relies on a noisy channel perspective on
speech recognition errors. The major differences are that
Ringger’s model does not account for multiple competing hy-
potheses at once and operates on word level. In section 5.2,
we compare our method with Ringger’s tool SpeechPP.

4. SPEECH CORPORA AND TOOLS

The experiments were conducted on both spontaneous casual
speech (dialogue systems) and read speech (newspaper texts).
PAC and IISAH dialogue corpora (German language):
The PAC corpus consists of 544 on-talk user moves collected
with a Wizard-of-Oz variant of the pedestrian assistance sys-
tem ROSE [16] which offers a mixed-initiative spoken lan-
guage interface for tasks ranging from information retrieval
(e.g. public transport live timetable questions) to more com-
plex problem solving issues such as navigational assistance,
re-planning or recommendation of locations and activities.

To evaluate if the technique presented here is adaptable to
other domains, we used in addition a subset (1185 moves) of
the FAU IISAH corpus [17] containing dialogues of elderly
people with a speech-controlled home assistance system.
WSJ read data: The Wall Street Journal Corpus (WSJ0)4 [18]
was divided – as in the Nov92 ARPA CSR Benchmark Tests
[19] – into a training set (used for LM training), a develop-
ment test set (1805 moves, used for error model and decision
tree training) and an evaluation test set (1285 moves).
Speech recognition and evaluation: For speech recognition
we used Google’s LVCSR service [20] and, for compari-
son, Sympalog’s5 recognition engine SymRec [21] (PAC data
only) with domain-specific 7K word bigram language model.

Table 1 shows the utterance correctness rate (UCR), word
(WER) and phoneme (PER) error rates of the first hypothesis
as well as the 5-best oracle correctness rate (UCR-O) and the
5-best mean rank of the first correct hypothesis (MRFC).

5. RESULTS

In the following experiments we used several features com-
puted using the model. Table 2 provides an overview. All

4Only channel 1 and recordings with no verbal punctuation were used.
5http://www.sympalog.de

Table 1. ASR performance before applying the method.
Dataset Lang UCR UCR-O WER PER MRFC
PAC-Google DE 34.2% 43.4% 38.29% 23.96% 1.33
PAC-SymRec DE 30.9% 38.8% 42.35% 31.90% 1.33
IISAH-Google DE 48.6% 56.8% 32.55% 20.52% 1.23
WSJ-Google EN 11.1% 16.3% 24.62% 12.01% 1.52

Table 2. Overview: Features in the re-ranking experiments.
NEWBEST OLDRANK: The original ASR rank of the best-scored

ASR hypothesis.
NEWBEST SCORE: The score argmaxiSH(hi) of the best-

scored ASR hypothesis.
OLDBEST SCORE,
SECOND SCORE,
WORST SCORE:

Analogous for the first ASR hypothesis,
the second-best scored and the worst-scored
hypothesis.

OLDBEST SCORERATIO,
SECOND SCORERATIO,
WORST SCORERATIO:

The ratio (relative distance) between the
corresponding score and BEST SCORE.

OLDBEST SCOREREL,
SECOND SCOREREL:

Ratio between the absolute distances of the
corresponding score and BEST SCORE, and
WORST SCORE and BEST SCORE.

ASR CONFIDENCE: The confidence of the speech recognizer.

reported results have been achieved using the normalized
Viterbi variant of the scores and the FEATURE-EM model
which yielded slightly better figures than other combinations.

5.1. Hypothesis rescoring

In general, rescoring of ASR hypotheses is achieved by
combining confidence measures from different knowledge
sources. We show the general usefulness of the above scores
for this task by reporting their correlation with error measures.

The score CH(h) shows a strong empirical linear correla-
tion (0.879) with the phonetic similarity P (h|r̂) of hypothesis
h and reference r̂, with the PER (−0.626) and yet a medium
correlation (−0.506) with the WER of the hypothesis.

These correlations are higher than the respective corre-
lations of the ASR confidence value (PER: −0.469 / WER:
−0.453). At the same time, there is only a weak correla-
tion between the mentioned score and the confidence (0.231).
These results indicate that the score contains useful informa-
tion that is different from that in the ASR confidence value.
Word-level scores: The approach can also be applied to score
words in a hypothesis. To achieve this, we compute all pair-
wise alignments of the phonetic strings of the hypotheses in a
n-best list. The alignments can be used to find the correspond-
ing sub-strings of the competing hypotheses for a given word
in one hypothesis (Fig. 1). The method described in section 2
is then applied to this set of competing phonetic sub-strings.

Similar to the utterance-level scores used above, the word-
level scores show a strong correlation (0.866) with the pho-
netic similarity to the corresponding phonetic segment of the
reference transcript.

5.2. N-Best List Re-Ranking

In the next experiment, we reordered the hypotheses in the
ASR 5-best6 list according to their score7 SH(hi). Both UCR

6Up to 30 n-best hypotheses were used to calculate the scores, but only the
5 best were re-ranked as the tail is unlikely to contain the correct transcript.

7Hypotheses with the same score were kept in the original order.
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vElC@n’o: p6 nho:f’aUsgaN welchen opern hof ausgang
vElC@n’U ntba:nho:f’aUsgaN welchen und bahnhof ausgang
vElC@nhu: b6 ho:f’aUsgaN welchen huber hof ausgang

Fig. 1. Calculation of word scores. R: n-best list with word of
interest. L: phonetic alignments w/ corresponding segments.

Table 3. Results of the re-ranking experiments.
UCR relat. WER relat. MRFC

a) WSJ – Google:
Baseline 11.1% 24.62% 1.52
Re-ranking 10.4% -6.3% 24.58% -0.2% 1.72

w/classifier 12.1% +9.0% 23.98% -2.6% 1.54
Gold standard 16.3% +46.8% 21.05% -14.5% 1.00
b) PAC – Google:
Baseline 34.2% 38.29% 1.33
Re-ranking 18.0% -47.4% 42.46% +10.9% 2.27

w/classifier 36.0% +5.3% 37.81% -1.3% 1.24
Gold standard 43.4% +26.9% 32.29 % -15.7% 1.00
c) PAC – Combined ASR engines:
Re-ranking 24.1% -38.3% 35.95% -6.1% 1.92

w/classifier 39.5% +15.5% 33.78% -11.8% 1.36
Gold standard 48.9% +43.0% 25.65 % -33.0% 1.00

and WER of the first hypothesis as well as the mean rank of
the first correct hypothesis were considerably worse than for
the original ranking (see Table 3, row ”Re-ranking”).

We investigated whether it is possible to augment in which
cases the method improves the ranking. For this purpose, we
marked all cases where the 1-best WER improved with the
class label RERANK and all cases where it became worse with
KEEP. We collected a number of potentially informative fea-
tures (see Table 2) to train a decision tree classifier (C4.5)
to distinguish the two classes. A subset of up to 4 features,
including the ASR confidence, showed the best performance
(Fig. 2 shows the tree for WSJ).

Using the classifier to decide when to apply the re-ranking
method, UCR and WER can be improved compared to the
original ranking. Table 3 a) and b) summarize the results
(10-folds cross validation). It should be mentioned that most
of the 5-best lists do not contain a correct hypothesis which
explains the relatively low gold standard (oracle re-ranking).
About 20% of the possible improvement could be achieved.
A similar pattern arises when the method is applied to the
SymRec 5-best lists and the IISAH data.

Combination of ASR engines:
We investigated whether the re-ranking approach can be ap-
plied to joint n-best lists from different speech recognizers
(system combination). For this purpose, we merged the n-
best lists of Google and SymRec according to the following
procedure: take the first Google hypothesis as first, first Sym-
Rec as second, second Google as third, and so forth; prune the
joint list to get equal numbers of contained hypotheses from
both sources.

Table 3 c) shows the results. In only 10% of the cases
where the Google result contained no correct hypothesis, the
second recognizer provided one. However, the supplemental
phonetic information given by the second recognizer was use-
ful enough to considerably improve the overall performance
of the classifier-based approach.

Table 4. Combination with error correction (SpeechPP).
WSJ-Google: PAC-Google:

UCR WER UCR WER
ASR 1-best 11.1% 24.62% 34.2% 38.29%
Re-ranking only 12.1% 23.98% 36.0% 37.81%
SpeechPP only 11.6% 23.51% 37.7% 35.02%
Combined 12.3% 23.16% 38.8% 35.40%

ASR_CONFIDENCE ?

RERANK

<= 0.85

NEWBEST_OLDRANK <= 4 ?

<= 0.95

KEEP

> 0.95

OLDBEST_SCOREREL <= 0.34 ?

yes

KEEP

no

RERANK

yes

ASR_CONFIDENCE <= 0.89 and NEWBEST_OLDRANK <= 3 ?

no

RERANK

yes

KEEP

no

Fig. 2. Decision tree for the application of the re-ranking.

Combination with error correction:
We also compared our method with Ringger’s error correc-
tion tool SpeechPP [15] mentioned in section 3. The two ap-
proaches tend to be complementary: The best results were
achieved by a combination of both algorithms (see Table 4).

5.3. Word error detection
Word error detection can be viewed as the task to assign the
labels correct vs. incorrect to each word in an ASR hypothe-
sis. We trained a logistic regression model [22] for this prob-
lem using similar features as suggested in [4] and [5]. The
classifier achieved 70.63% correctness (10-folds cross vali-
dation). Including the features from Table 2 yields a slight in-
crease to 71.9%. The best results were achieved with a combi-
nation of OLDBEST SCORE and OLDBEST SCOREREL. The
figures indicate that the method described in this paper can
facilitate error detection, yet there is need for further research
to provide a feasible technique for reliable identification of
incorrectly recognized words.

6. SUMMARY

We described and evaluated our approach to augment the
correct transcript from extended ASR output. The model is
built upon phoneme error probabilities that can easily be es-
timated from data. We evaluated some applications for post-
processing of ASR results from conversational dialogue sys-
tems as well as WSJ read data. It is possible to apply machine
learning to the task of deciding when the method should be
applied. An improved overall performance was achieved for a
re-ranking strategy in combination with a decision tree classi-
fier, particularly when multiple ASR engines were combined.

The encouraging results suggest that it might be promis-
ing to further optimize the method and combine it with other
approaches to rescoring, error detection and error correction.
Future investigations should evaluate the use of syllable or
higher-order phoneme error models with probabilities depen-
dent on the phoneme context or the rank of the hypothesis.
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