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ABSTRACT

Detecting automatic speech recognition (ASR) errors can play an

important role for effective human-computer spoken dialogue sys-

tem, as recognition errors can hinder accurate system understanding

of user intents. Our goal is to locate errors in an utterance so that the

dialogue manager can pose appropriate clarification questions to the

users. We propose two approaches to improve ASR error detection:

(1) using recurrent neural network language models to capture long-

distance word context within and across previous utterances; (2) us-

ing a complementary ASR system. The intuition is that when two

complementary ASR systems disagree on a region in an utterance,

this region is most likely an error. We train a neural network predic-

tor of errors using a variety of features. We performed experiments

on both English and Iraqi Arabic ASR and observed significant im-

provement in error detection using the proposed methods.

Index Terms— ASR error detection, recurrent neural network

language model, deep neural network acoustic model, complemen-

tary ASR

1. INTRODUCTION

In dialogue-based spoken language systems, recognition errors made

by an automatic speech recognizer (ASR) can affect natural language

understanding. One way to mitigate this impact is to use a dialogue

manager in an attempt to correct recognition errors. Specifically,

erroneous regions in an ASR hypothesis are first detected. Then the

dialogue manager asks the user targeted clarification questions about

the error region (e.g., the dialogue manager may request rephrasing

or spelling of words) [1]. In this way, accurate ASR error detection

can play a crucial role within a dialogue system.

We present two approaches to improve ASR error detection per-

formance: (1) forward and backward recurrent neural network lan-

guage models (RNNLM); and (2) combining complementary deep

neural network (DNN) ASR and Gaussian mixture model (GMM)

ASR. Forward and backward RNNLM provides long-distance word

context within and across utterances within a dialogue session. We

derive forward and backward RNNLM features based on language

model scores and the distance between the current word and previ-

ous/next words from the hidden state vectors. To further leverage

long-distance context, we apply incremental unsupervised RNNLM

adaptation on ASR hypotheses by using previous utterances.

A natural way to minimize the problem of error detection is

to reduce recognition errors. As recently reported [2], DNN ASR

significantly improves recognition accuracy as compared to GMM

ASR. We observe significant gains in both English and Iraqi Ara-

bic speech recognition on the DARPA TRANSTAC corpora using

DNN. However, DNN tends to produce sparse word lattices due to

sharp state posteriors. Thus, word posteriors in the resulting con-

fusion network are close to unity, and few alternative paths exist.

The inability to provide word confusions makes error detection diffi-

cult, because word posterior-related features become uninformative.

While GMM ASR tends to produce dense lattices, its recognition

accuracy is worse than that of DNN.

In this paper, we seek both more accurate ASR hypotheses and

more informative word confusions in the error regions. We propose

using GMM ASR as a complementary system for error detection.

First, we run DNN and GMM ASR in parallel, producing two sets

of confusion networks. Using the DNN confusion network as a base,

we enhance the word confusions of the DNN confusion network by

adding the GMM ASR hypotheses into the DNN confusion network.

Then, we use the combined confusion network together with features

from the confusion slot alignment to train a neural-network word

confidence predictor. Our proposed approaches not only improve

error detection accuracy, but also avoid compromising recognition

accuracy.

We organize the paper as follows: In Section 2, we present our

ASR error detection approaches. In Section 3, we evaluate our ap-

proaches on English and Iraqi Arabic ASR using DNN and GMM

acoustic models. In Sections 4 and 5, we present related work and

conclusions.

2. ASR ERROR DETECTION

Given an ASR system, we decode training utterances {X} to gen-

erate confusion networks and ASR hypotheses. We align the ASR

hypotheses against the manual reference transcription to mark the

errors in the ASR hypotheses. We use a binary y = 0/1 label on

each hypothesized word to indicate error or correct. Given training

examples {(xi, yi)} where xi denotes a feature vector of the i-th

training example, we employ a feed-forward neural network classi-

fier to predict the word confidence p(yi|xi). The input features are

pre-processed via global mean and variance normalization. Then, a

neural network classifier is trained using backpropagation. Below

are the features that we use to train the neural network classifier:

2.1. Baseline features

We extract contextual features from a confusion network at each

word position j of the ASR hypothesis W = w1w2...wj ...wN :

• log word posterior log p(wj |X).

• log unigram probability p(wj).

• log forward 4-gram probability p(wj |wj−1wj−2wj−3).
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• log backward 4-gram probability p(wj |wj+1wj+2wj+3).

• relative word position j/N .

• log sentence length logN .

• number of alternative word candidates in a confusion slot.

• log word posterior of the previous word log p(wj−1|X).

• log word posterior of the next word log p(wj+1|X).

• log word posterior of the previous word but one log p(wj−2|X).

• log word posterior of the next word but one log p(wj+2|X).

• log mean of word posteriors in a confusion slot.

• standard deviation of word posteriors in a confusion slot.

• is the previous word equal to ǫ, a null symbol corresponding

to word deletion?

• is the next word equal to ǫ?

• log length of the current word wj .

2.2. RNNLM features

A recurrent neural network language model p(wj |wj−1, hj−1) [3]

has a recursive structure that predicts a current word wj given

the previous word wj−1 and previous hidden state vector hj−1.

RNNLM can be learned using backpropagation through time to

maximize the log likelihood of the training sentences.

To extract RNNLM features, we first perform a feed-forward

pass on an ASR hypothesis, storing a sequence of hidden state vec-

tors at each word position. We generate the following features at

each word position j of the ASR hypothesis:

• RNNLM score log p(wj |wj−1, hj−1): This measures the log

likelihood of the current word given the word history.

• Distance(hj−1, hj) = 1

K

√

hj−1 · hj : Viewing RNNLM as

mapping a word history into a hidden state space, this feature

measures the movement from the previous to the current hid-

den state. K denotes the dimensionality of the hidden state

vector.

• Distance(hj , hj+1) =
1

K

√

hj · hj+1: Similarly, this feature

measures the movement from the current to the next hidden

state.

To take advantage of full sentence context, we employ a backward

RNNLM p(wj |wj+1, hj+1) trained with sentences in reverse word

order. Likewise, we extract the RNNLM features described above,

yielding 6 RNNLM features in total.

2.3. Incremental unsupervised RNNLM adaptation

Within a dialogue, utterances are usually correlated. We investigate

incremental unsupervised RNNLM adaptation using the ASR hy-

pothesis from the previous utterance. During adaptation, backprop-

agation on the previous utterance was performed with the learning

rate adjusted to control the degree of adaptation.

2.4. Combining complementary ASR

System combination is an effective technique that minimizes the

word error rate when multiple complementary ASR systems are

available [4, 5, 6]. Extending this idea to ASR error prediction, we

posit that disagreements in complementary ASR hypotheses could

be a good indicator of error regions. In our experiments, DNN ASR
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Fig. 1. Aligning a combined confusion network and a complemen-

tary confusion network for feature extraction. The word “how” from

a GMM hypothesis is inserted into the DNN confusion network.

serves as a primary system, while GMM ASR serves as complemen-

tary ASR. DNN and GMM ASR are trained on the same data but

with different modeling assumptions. Therefore, we expect them to

output different ASR hypotheses. Empirically, DNN tends to pro-

duce sparse confusion networks with very few paths, making ASR

error detection difficult. Therefore, combining confusion networks

from DNN and GMM enhances word confusions particularly in dis-

agreement regions. Below, we list the steps for performing system

combination and feature extraction:

1. Add the 1-best GMM ASR hypothesis into the DNN confu-

sion network with a very small path posterior. Extract the

baseline features described in Section 2.1 from this combined

confusion network.

2. Introduce three binary GMM features: Does a left/current/right

combined confusion slot contain a new word from the GMM

hypothesis?

3. Align the combined confusion network with the GMM con-

fusion network using dynamic programming. Use the slot-to-

slot alignment to generate the following features:

• expected word error E[error(pi(w), pj(w)] where

pi(w) denotes the word posterior distribution of the

i-th slot in the combined confusion network and pj(w)
denotes the word posterior distribution of the j-th slot

in the GMM confusion network. The expectation is

computed using the DNN hypothesis as the reference:

E[error(pi(w), pj(w)] =
∑

w

pi(w) · (1− pj(w))

• the number of alternative word candidates, maximum,

mean, and standard deviation of word posteriors of a

GMM confusion slot described in Section 2.1. Project

these features onto a combined confusion slot by using

the slot-to-slot alignment. We also consider the left and

right context for these features.

Figure 1 shows the confusion network alignment between the com-

bined confusion network and the GMM confusion network. Adding

the 1-best GMM ASR hypothesis with a very small path posterior en-

hances word confusions in the disagreement regions without chang-

ing the best path of the unmodified confusion network. In other

words, the number of errors to detect remains unchanged. Thus,

ASR error detection performance with different configurations is

comparable. With the combined confusion network, features such

as the number of alternative candidates, mean and standard devia-

tion of word posteriors are affected by the structural change of the

confusion network.
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# sentences # error tokens
DNN ASR

Train 951 1543 (10632)

Dev 330 495 (3756)

Test 304 496 (3646)

Table 1. Statistics of the English error prediction. Numbers in paren-

theses denote the number of tokens in ASR hypotheses.

# sentences # error tokens
DNN ASR

Train 13378 21891 (85160)

Dev 3818 5668 (24456)

Test 3817 3817 (24418)

Table 2. Statistics of the Iraqi Arabic error prediction. Numbers in

parentheses denote the number of tokens in ASR hypotheses.

3. EXPERIMENTAL SETUP

The GMM system [1] was trained discriminatively using 400 hours

of the DARPA English TRANSTAC dataset; TRANSTAC was

a speech-to-speech translation program targeting tactical military

communication. The Iraqi Arabic system was trained with 600 hours

of data. Thirteen dimensional MFCC features, augmented with first,

second and third order derivatives with segmented mean and vari-

ance normalization were reduced to 40 dimensions by HLDA. The

DNN system was trained on the same data as the GMM. Fifteen

contextual features were concatenated and further reduced to 300 di-

mensions by linear discriminant analysis (i.e., the final input feature

for DNN training). The DNN system had four hidden layers, each

having 1200 hidden nodes, and 3000 output nodes corresponding to

the clustered senone states from the decision tree of the GMM sys-

tem. The DNN system was initially trained with the cross-entropy

criterion for 15 epochs, followed by 1 epoch of boosted maximum

mutual information training [7]. The same recipe was applied for

Iraqi Arabic. On both English and Iraqi Arabic TRANSTAC test

sets, we observed a 7%–20% relative reduction in word error rate

when using DNN ASR compared to GMM ASR.

For language modeling, we trained trigram and 4-gram language

models using modified Kneser-Ney smoothing for decoding and lat-

tice rescoring, respectively. For the English background language

models, we trained an in-domain language model with the English

transcripts of the DARPA TRANSTAC Iraqi Arabic, Farsi, Pashto,

Dari, and Malay collections, with a total of 16M words. We also

trained a language model on a variety of out-of-domain data includ-

ing Switchboard, Fisher, TDT, and Hub4 broadcast news transcripts.

The in-domain and out-of-domain language models were linearly

interpolated to generate the final trigram and 4-gram language mod-

els [8]. The Iraqi Arabic hierarchical class-based language models

[8] were trained on the TRANSTAC Iraqi Arabic transcripts with

5M words. We used only the TRANSTAC data to train recurrent

neural network language models using the RNNLM toolkit [3].

The RNNLM had 500 hidden nodes trained with backpropagation

through time. We used the same data to train forward and backward

4-gram LM without pruning. The log probabilities of the language

models were used as features in the baseline.

The training, development and test sets for error prediction com-

prised audio from the TRANSTAC test sets and sentences recorded

in house with out-of-vocabulary words including named entities.

These sets were not used in acoustic and language model training.

Tables 1 and 2 show the number of error tokens in ASR hypothe-

ses for English and Iraqi Arabic ASR. We aligned the reference

transcriptions against the confusion networks by using the SRILM

toolkit [9] to obtain target labels for training and evaluating error de-

tection. For Iraqi Arabic, we further applied word normalization to

obtain meaningful target labels due to morphological variations. The

error tokens included substitution and insertion errors but not dele-

tion errors, because deletions of reference words were unrecoverable

and did not exist in the ASR hypotheses.

We employed a 3-layer neural network for word confidence pre-

diction. The number of hidden nodes was set to six and eight for

English and Iraqi Arabic, respectively, according to the error de-

tection performance on the development set. The baseline neural

network confidence predictor had sixteen input features, while the

forward plus backward RNNLM extracted six features in total. We

randomly picked 10% of the training data for cross validation dur-

ing neural network training. For the English predictor, we applied

L2 regularization over the neural network weights to prevent overfit-

ting. Stochastic gradient descent was applied for parameter learning

via minimizing the cross entropy of the output binary labels.

3.1. Performance metrics

We used the probability of miss P (miss) and the false alarm (FA)

rate to show the performance tradeoff. P (miss) measures the rate

of missing a word error. The false alarm rate measures the rate of

incorrectly detecting a word error. We plotted the receiver operating

characteristic (ROC) curve with P (miss) against FA by varying a

threshold. When a predicted word confidence was higher than the

threshold, the word was classified as correct; otherwise, it was clas-

sified as incorrect. P (miss) and FA are calculated as follows:

P (miss) =
FN

TP + FN
(1)

FA =
FP

N
(2)

where FN, TP, FN, FP and N denote the false negative, true positive,

false negative, false positive, and the total number of word tokens in

an ASR hypothesis, respectively. TP + FN is the number of er-

rors in the ASR hypotheses. The metrics’ denominators were fixed

for an ASR system. But they changed when the ASR configura-

tion changed (for instance, when moving from GMM ASR to DNN

ASR).

3.2. Error prediction results

Figure 2 shows the ROC curve using English DNN and GMM

ASR. Because forward and backward 4-gram language models were

used in the baseline, the additional gain from the RNNLM features

may suggest that long-distance word context beyond the 4-gram

was helpful. Considering the order of utterances allowed RNNLM

to integrate long-distance context across previous utterances. We

also compared the effect of unsupervised RNNLM adaptation using

the previous ASR hypothesis. The RNNLM weights were adapted

with the learning rate set to 0.05. However, the effectiveness of

unsupervised adaptation was inconclusive.

Sparse DNN confusion networks tend to make error detection

difficult. The word posteriors in confusion network slots were

mostly close to unity, making the posterior-related features less

useful for error prediction. To alleviate the impact of sparse DNN

confusion networks, we used GMM ASR as a complementary sys-

tem. Following the treatment described in Section 2.4, we added
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Fig. 2. ROC curve of English ASR error detection on a test set using

a DNN ASR with RNNLM features.
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Fig. 3. ROC curve of English ASR error detection on a test set using

a DNN ASR with complementary GMM ASR and RNNLM features.

the GMM ASR hypothesis into the DNN confusion network, ex-

tracted the GMM features from the combined confusion network,

and extracted features from the GMM confusion network. Figure 3

showed the additive benefit using complementary GMM ASR. At

a 10% false alarm rate, we achieved a 38% relative reduction in

P(miss) by using GMM plus RNNLM features compared to the

DNN baseline. To show the oracle performance, we added the man-

ual reference into the DNN confusion networks. The results showed

that room for improvement may exist.

Observations from Iraqi Arabic were similar, as shown in Fig-

ure 4. Combining DNN and GMM confusion networks yielded

significant gain. Gain from RNNLM features and complementary

GMM ASR was additive. At a 10% false alarm rate, we achieved

a 30% relative reduction in P(miss) by using GMM plus RNNLM

features compared to the DNN baseline. In terms of WER, Iraqi

Arabic GMM ASR was inferior to DNN by a large WER margin.

However, adding GMM ASR hypotheses into the DNN confusion

network was still useful for ASR error prediction. This observation

suggests that the disagreement regions between GMM and DNN are

strong indicators of recognition errors. Although DNN was unable

to produce dense lattices, adding a GMM ASR hypothesis into a

DNN confusion network helped alleviate the lattice sparsity.
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4. RELATEDWORK

During the previous decade, various researchers [10, 11, 12, 13,

14, 15, 16, 17] have intensively investigated confidence measures:

see [18] for a survey. [19, 20] investigated features from a confusion

network. [21] investigated application-dependent word distribution

and rule-coverage ratio as features for confidence calibration. On a

related front, [22, 23] extracted features from syntactic/dependency

parsers for out-of-vocabulary detection. [24] employed word and

sub-word units to train a hybrid language model to output word frag-

ments. Research closely related to this paper exploits multiple ASR

systems [25, 26, 24, 27] trained with word/phone-based acoustic

models, and with multiple hybrid LMs. Our work’s major differen-

tiator resides in our use of two approaches: (1) RNNLM features to

capture long-distance context within and across previous utterances

and (2) combining complementary state-of-the-art DNN and GMM

ASR for effective error detection. Unlike other research efforts that

combine 1-best ASR hypotheses from multiple systems, we lever-

age DNN and GMM confusion networks that store word confusion

information from multiple systems for feature extraction.

5. CONCLUSIONS

We have presented RNNLM and complementary DNN and GMM

ASR for error prediction. RNNLM features capture long-distance

context, while the complementary ASR helps identify ASR errors

especially in disagreement regions. Results have shown significant

improvement in ASR error prediction using state-of-the-art DNN

ASR with the proposed approaches. In future, we plan to investi-

gate better strategies to combine confusion networks from multiple

complementary ASR systems.
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