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ABSTRACT

We consider decentralized direction-of-arrival (DoA) estima-
tion for large partly calibrated arrays composed of multiple
fully calibrated uniform linear subarrays. Due to the difficulty
of maintaining coherence between signals received in widely
separated subarrays, the practical case of non-coherent subar-
rays is investigated. Our novel approach for decentralized and
non-coherent DoA estimation is based on finding the common
roots (CRs) of multiple univariate polynomials correspond-
ing to individual subarrays. We propose two algorithms us-
ing generalized Sylvester matrix to find the CRs and to es-
timate the DoAs. The proposed algorithms substantially re-
duce communication and computation costs compared to tra-
ditional centralized DoA estimation methods. Moreover, sim-
ulation results demonstrate that our algorithms outperform
existing decentralized methods and can deal with possible
DoA estimation ambiguities caused by subarray geometries.

Index Terms— decentralized DoA estimation, general-
ized Sylvester matrix, root-MUSIC.

1. INTRODUCTION

Direction-of-arrival (DoA) estimation using sensor arrays is
essential for many applications such as radar, sonar, under-
water surveillance, and seismic exploration [1], [2]. Central-
ized subspace-based algorithms such as MUSIC [3], MODE
[4], and WSF [5] exhibit super resolution property and effi-
cient performance. However, these algorithms must process
all sensor outputs coherently. Moreover, in these algorithms,
the precise knowledge of all sensor locations is required, i.e.,
the array has to be fully calibrated. In the case of partly cal-
ibrated arrays with unknown subarray displacements, other
subspace-based algorithms, such as those developed in [6]-
[9], can be applied. These algorithms also perform central-
ized coherent processing. In large sensor systems, decentral-
ized computation is preferable, as it significantly reduces the
computational load at the fusion center (FC), or even elim-
inates the need for FC. Decentralized DoA estimation using
matrix completion is presented in [10] for the case of coherent
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fully calibrated arrays. Considering the same case, algorithms
based on consensus operations are introduced in [11]-[13] to
estimate sample covariance matrix and to perform subspace
tracking without requiring FC. For partly calibrated arrays, a
decentralized-ESPRIT approach is introduced in [14] to per-
form coherent DoA estimation.

However, in large arrays, coherent processing may not be
feasible as it becomes very difficult to maintain coherence be-
tween signals received in widely separated sensors. Hence, it
is necessary to resort to decentralized processing where non-
coherent large arrays are split into a number of smaller co-
herent fully calibrated subarrays. Each subarray locally pro-
cesses its own measured data coherently and sends the results
to FC. The FC uses these results in a non-coherent manner to
estimate the DoAs. In [15], a decentralized version of MUSIC
algorithm is used for localization. In this algorithm, each sub-
array sends its locally estimated signal- and noise-subspace
matrices to the FC, where the decentralized MUSIC spectrum
is computed as the summation of individual subarray spec-
tra. Generalized MUSIC method in [16] performs similar
processing only to estimate DoAs. In [17], another version of
decentralized MUSIC is analyzed. In this approach, the sub-
arrays send the locally estimated DoAs and their estimated
variances to the FC, which linearly combines the local esti-
mates after weighting them by their estimated variances. A
similar method which is robust against distributional uncer-
tainties in noise model is presented in [18].

In this paper, a novel decentralized DoA estimation
method based on common root (CR) finding is proposed.
It is assumed, in Section 3.1, that each subarray computes a
polynomial and communicates it to the FC, where the sig-
nal roots are estimated from the CRs of these polynomials.
Based on Sylvester matrix introduced in Section 3.2, we pro-
pose two algorithms for computing the CRs in Sections 3.3
and 3.4. These algorithms reduce computational complexity
as discussed in Section 4. The simulation results in Section
5 display that, the proposed algorithms have enhanced res-
olution capabilities and their performance stays close to the
Cramér Rao bound (CRB) asymptotically. Moreover, these
algorithms, as shown in Section 5, are able to overcome am-
biguities in estimation resulting from ambiguous subarrays
(e.g., subarrays with inter-sensor spacing larger than half-
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wavelength of narrowband signals) as long as at least one
subarray is able to estimate the DoAs unambiguously.

2. SIGNAL MODEL

Consider a sensor array composed of K identically-oriented
non-overlapping uniform linear subarrays. The inter-sensor
spacing at the kth subarray dk is assumed to be an integer
multiple of a smaller distance d, i.e., dk = nkd for nk ∈ N,
where d is measured in wavelength λ. The number of sen-
sors in the kth subarray is Mk. The displacements between
the subarrays are assumed to be unknown. Consider L nar-
rowband uncorrelated far-field sources impinging on the ar-
ray from directions θ1, . . . , θL. We assume that each sub-
array can identify at least L sources. Under these assump-
tions, the response of the kth subarray (i.e., its manifold vec-
tor) to a source at direction θ relative to array broadside is
aaak(z) =

[
1, znk , . . . , znkMk−1

]T
where z , ej2πd sin θ. The

output of the kth subarray can be formulated as

yyyk(t) = AAAkxxx(t) +nnnk(t), (1)

where AAAk = [aaak(θ1), . . . , aaak(θL)] is the Mk × L steering
matrix, xxx(t) is the L× 1 baseband signal vector of L sources,
and nnnk(t) is the Mk × 1 noise vector. The noise vector nnnk(t)
is assumed to be white Gaussian with variance σ2IIIMk

where
IIIMk

is Mk ×Mk identity matrix.
The covariance matrix for the kth subarray is defined as

RRRk , E[yyyk(t)yyyHk (t)] = AAAkRRRxxAAA
H
k + σ2IIIMk

, (2)

where E[·] stands for the statistical expectation, (·)H denotes
the conjugate transpose, and RRRxx , E[xxx(t)xxxH(t)] is the sig-
nal covariance matrix. After eigendecomposition of RRRk, its
eigenvalues in decreasing order are λ1 ≥ λ2 ≥ . . . ≥ λL ≥
λL+1 = . . . = λMk

= σ2, and their corresponding eigenvec-
tors are eee1, . . . , eeeMk

. Then, we can write

RRRk = EEEkΛΛΛkEEE
H
k +GGGkΓΓΓkGGG

H
k , (3)

where the diagonal matrices ΛΛΛk = diag {λ1 . . . , λL} and
ΓΓΓk = diag {λL+1 . . . , λMk

} contain the so-called signal
and noise eigenvalues, respectively, EEEk = [eee1, . . . , eeeL] and
GGGk = [eeeL+1, . . . , eeeMk

] are the signal- and noise-subspace
matrices, respectively.

In practice, the covariance matrix is not available and its
finite sample estimate R̂RRk = 1

N

∑N
t=1 yyyk(t)yyyHk (t) is used

where N is the number of the available snapshots. Let
ÊEEk, ĜGGk, Λ̂ΛΛk, and Γ̂ΓΓk, obtained from the eigendecomposi-
tion of the sample covariance matrix R̂RRk, be the estimates of
EEEk,GGGk,ΛΛΛk, and ΓΓΓk, respectively.

3. DECENTRALIZED DOA ESTIMATION

In this section, we propose a novel decentralized rooting-
based DoA estimation method. Our approach is divided into
two steps. First, each subarray computes a polynomial lo-
cally, and sends it to the FC. Second, at the FC, the CRs of K

polynomials are computed using generalized Sylvester matrix
(described in more details in Section 3.2) and the DoAs are,
then, estimated from the CRs.

3.1. Computing Local Polynomials

Using its locally estimated noise-subspace, the kth subarray
can compute, as in root-MUSIC [19], the following polyno-
mial

P̂k(z) = aaaHk (z)ĜGGkĜGG
H
k aaak(z). (4)

In analogy to root-MUSIC, P̂k(z) has 2nk(Mk − 1) roots
which occur in pairs. More precisely, if ẑi is a root of P̂k(z),
then its conjugate reciprocal 1/ẑ∗i is also a root of P̂k(z).
Thus, half of the roots of P̂k(z) are inside the unit circle (UC)
and half are outside the UC. Note that, for nk = 1, P̂k(z) re-
duces to the root-MUSIC polynomial. If nk > 1 then P̂k(z)
has nk times more roots than conventional root-MUSIC, re-
sulting in ambiguities in DoA estimation. The conventional
decentralized MUSIC can not deal with these ambiguities.
However, we show in the following sections that our CR-
finding approach is able to eliminate the extra roots and to
estimate the DoAs if at least one subarray is able to estimate
unambiguously.

The polynomial in (4) can be written as a multiplication
of two polynomials

P̂k(z) = ˆ̃Pk(z) ˆ
˜
P k(z), (5)

where ˆ̃Pk(z) and ˆ
˜
P k(z) are formed from the outside and the

inside the UC roots of P̂k(z), respectively. Due to the con-
jugate reciprocal property of the root pairs, both polynomials
contain the same spatial information. Therefore, one of the
polynomials is sufficient to estimate the DoAs. We choose
ˆ̃Pk(z), since its (outside the UC) roots are more distant hence
more distinguishable than the (inside the UC) roots of ˆ

˜
P k(z).

Let

ˆ̃Pk(z) = ĉk,0 + ĉk,1z + . . .+ zDk , k = 1, . . . ,K (6)

where ĉk,i for i = 0, . . . , Dk − 1 is the complex coefficient

of ˆ̃Pk(z) scaled such that ĉk,Dk
= 1, and Dk , nk(Mk − 1)

is the degree of ˆ̃Pk(z). Only these coefficients are sent to
the FC, thus the communication cost per subarray is Dk =
nk(Mk−1). In centralized processing where all the measure-
ments are sent to FC, the communication cost per subarray is
MkN . Thus, the proposed communication scheme reduces
the communication cost, since normally N � nk.

Sorting the roots of ˆ̃Pk(z) such that |ẑ1| ≤ . . . ≤ |ẑDk
|,

the smallest L roots are called the signal roots (containing the
source DoA information) and the remaining Dk−L roots are
called the noise roots. Since each subarray can identify the L
sources, all the subarrays share the same signal roots. Thus,
the CRs of all local polynomials in the set P , { ˆ̃Pk(z)}Kk=1

contain L signal roots, and can be used for DoA estimation.
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Having received all theK local polynomials from the sub-
arrays, the FC uses generalized Sylvester matrix to estimate
the CRs.

3.2. Generalized Sylvester Matrix

Originally, Sylvester matrix is defined for two polynomials
[20], [21]. In [22]-[24] generalizations for Sylvester matrix
are introduced for more than two polynomials. In the follow-
ing, we use generalized matrix from [24] as it has the smallest
size compared to generalizations defined in [22] and [23].

Assume without loss of generality that D1 ≥ D2 ≥ . . . ≥
DK . Generalized Sylvester matrix SSS consists of K blocks,
i.e.,

SSS =
[
SSST1 ,SSS

T
2 , . . . ,SSS

T
K

]T ∈ Cr×h, (7)

where r = (K − 1)DK + D1, and h = D1 + DK . The first
K − 1 blocks correspond to the first K − 1 polynomials such
that, for k = 1, . . . ,K − 1

SSSk =
[
c̃ccTk,DK−1, c̃cc

T
k,DK−2, . . . , c̃cc

T
k,0

]T ∈ CDK×h, (8)

where each row c̃cck,m , [0, . . . , 0, ĉk,0, . . . , ĉk,Dk
, 0, . . . , 0]

contains zeros at the first h − m − Dk − 1 and the last m
entries. The Kth block corresponds to the polynomial with
the smallest degree DK ,

SSSK =
[
c̃ccTK,D1−1, c̃cc

T
K,D1−2, . . . , c̃cc

T
K,0

]T ∈ CD1×h. (9)

Sylvester matrix SSS is of rank h and it drops rank if and only
if the set of polynomials P has at least one CR [24]. More
precisely, if polynomials in the set P have n CRs then

rank(SSS) = h− n. (10)

If the polynomials in P were exact (or in array processing
context N → ∞), then equation (10) implies that SSS would
have exactly n zero singular values. In such case, the CRs can
be computed using triangularization [24]. However, the poly-
nomials are not exact and the signal roots are only approxi-
mately similar, thus, SSS will have n small but non-zero singu-
lar values. Based on our simulations (not shown in here), the
use of triangularization method for computing the CRs and,
consequently, estimating the DoAs results in poor asymptotic
performance. Therefore, in the following, we propose two
algorithms to estimate the CRs of polynomials in P .

3.3. Algorithm I

Let zi for i = 1, . . . , n be one CR of polynomials in P and
N (SSS) be the null space of SSS. Then, the Vandermonde vector
zzzi =

[
1, zi, z

2
i , . . . , z

h−1
i

]T
belongs to N (SSS), i.e., SSS zzzi = 000.

Thus, for all the CRs z1, . . . , zn, matrix

ZZZn = [zzz1, . . . , zzzn] ∈ Ch×n, (11)

forms a set of basis for N (SSS). Let vvv1, . . . , vvvn be the first n
right singular vectors of SSS (corresponding to the n smallest
singular values), then matrix VVV n = [v̂vv1, . . . , v̂vvn] also forms a

set of basis forN (SSS). Therefore, from equation (10) it can be
inferred that VVV n and ZZZn span the same subspace. Moreover,
ZZZn has a Vandermonde structure, thus ESPRIT algorithm [6]
can be used to estimate the n CRs from VVV n [25]. In analogy
to [25], we form two matrices VVV n and VVV n by deleting the first
and the last rows of VVV n, respectively. The n sought roots are,
then, the eigenvalues of matrix

ΦΦΦ =
(
VVV n

HVVV n

)−1

VVV n
HVVV n. (12)

Note that if the subarrays are not identical, then as dis-
cussed in Section 3.1, the polynomials in P have at least
L CRs. However, in low SNRs some of the noise roots
corresponding to the subarray(s) with the largest number of
sensors may cause the matrix SSS to be rank deficient. Con-
sequently, we suggest to expand the estimated N (SSS) for
n = L,L + 1, . . . , h. For each value of n, we compute n
roots from the eigenvalues of ΦΦΦ in equation (12). Let the
remainders of the polynomials in P at each of the n roots be

Remn,i =

K∑
k=1

∣∣∣ ˆ̃Pk(zi)
∣∣∣2
2
, i = 1, . . . , n. (13)

Remn,i quantifies the quality of each estimated root for dif-
ferent values of n. We define the remainder Remn as the sum
of the L smallest {Remn,i}ni=1 at each value of n. The L
roots that minimize the remainder Remn are chosen as the es-
timates of the L common signal roots. We should point out
that if all the subarrays are identical, then the set of CRs con-
tains not only the signal roots but also the noise roots, i.e.,
n = D1 = D2 = . . . = DK . In this special case, the L roots
which are closer to the UC are chosen.

Having estimated L signal roots as ẑl for l = 1, . . . , L at
the FC, the DoAs can then be computed from

θ̂l = sin−1(
arg(ẑl)

2πd
), l = 1, . . . , L. (14)

3.4. Algorithm II

Let zzz ,
[
1, z, z2, . . . , zh−1

]T
, then the following function

f(z) = ‖SSS zzz‖22 = zzzHSSSHSSS zzz (15)

is exactly zero whenever z is equal to one of the CRs of poly-
nomials in P , since SSS zzz |z=zi = 000 for i = 1, . . . , L. There-
fore, the CRs of polynomials in P can be estimated by mini-
mizing f(z). This can be achieved by rooting f(z). However,
f(z) has 2(h−1) roots, and similar to equation (4), these roots
occur in pairs as we explained in Section 3.1. Therefore, the
L signal roots are chosen in two steps. First, the h − 1 roots
of f(z) which are outside the UC is selected. Second, the re-
mainder defined in equation (13) is calculated for the h − 1
roots, and the L roots with the smallest remainder are chosen.
We should remark that, choosing the L roots closest to the UC
yield almost the same performance. Having estimated the L
signal roots, the DoAs can be estimated from equation (14).
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Fig. 1. DoA estimation performance (RMSE) vs. SNR in
unambiguous scenario.

4. COMPLEXITY ANALYSIS

We investigate the computational cost of the proposed algo-
rithms at the FC and their dependency on the number of subar-
rays K. Our focus on the number of subarrays in complexity
analysis is due to the fact that large arrays can be build using
large number of subarrays each containing moderate number
of sensors. To simplify the comparison, it is assumed that the
subarray sizes are not widely different. The computational
cost of Algorithm I is dominated by calculation of singular
value decomposition of Sylvester matrix SSS which according
to [26, p. 215] costs O(rh2) = O(KD3

K). The remaining
steps depends only on the estimatedN (SSS) which in the worst
case has the size of h × h and does not depend on K. In Al-
gorithm II, the cost is dominated by the multiplication SSSHSSS
which is O(KD3

K). The other step in Algorithm II is root-
ing a polynomial of degree 2(h − 1) and does not depend on
K. In centralized processing, computing the covariance ma-
trix of size DKK × DKK and its eigendecomposition cost
O(D2

KK
2N) and O(K3D3

K), respectively. It can be seen
that the complexity of the proposed algorithms scales linearly
with the number of subarraysK, while the complexity of cen-
tralized processing increases by K3.

5. SIMULATION RESULTS

Assume a sensor array consisting of 6 uniform linear sub-
arrays with 4, 5, 6, 7, 7, and 7 sensors. The positions of
reference sensors of 6 subarrays measured in wavelength
are (0, 0), (0.3, 0.5), (−0.4, 0.4), (1.1, 0.91), (1.2, 0.61),
and (1.5, 0.9), respectively. The inter-sensor spacing in
all the subarrays is taken to be the signal half-wavelength
d1 = · · ·=dK = λ

2 . Three uncorrelated Gaussian equal-power
sources impinge on the array from directions −3.32◦, 1.41◦,
and 17.85◦. A number of N = 50 snapshots are collected
at each subarray. We compare the two proposed algorithms
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Fig. 2. DoA estimation performance (RMSE) vs. SNR in
ambiguous scenario.

with the following algorithms: (1) averaging method, where
the subarrays use root-MUSIC method to estimate the DoAs
and the FC average these estimates, (2) decentralized MU-
SIC method of [17] which uses averaging of the local es-
timates weighted by their estimated variances as defined in
[17], (3) generalized spectral MUSIC method in [16] using
a search grid with granularity of 0.1◦. All algorithms are
compared to the CRB for non-coherent processing defined as

CRB =
(∑K

k=1CCC
−1
k

)−1

[17], where matrix CCCk is the CRB
matrix corresponding to the kth subarray as defined in [27].
In our simulation, 200 Monte Carlo runs are used.

Fig. 1 shows the root-mean-square-error (RMSE) of the
DoA estimates versus SNR. It is obvious that the performance
of the two proposed algorithms stay close to the CRB and out-
perform the three competing methods at high SNRs as well.
The proposed methods also have better threshold performance
when compared to other algorithms. The resolution proba-
bility percentage as defined in [8] is also considered (the re-
lated figure is not shown due to lack of space). We found
that in the threshold region, the proposed algorithms have the
best performance. For example, at SNR=5dB both proposed
algorithms have resolution probability over 95%. The next
best algorithm is decentralized MUSIC method with resolu-
tion probability of around 65%.

Fig. 2 shows the RMSE for the same setup as described
above except that d1 = λ. Thus, the first subarray is unable
to identify the sources unambiguously. As it can be seen in
this figure, the ambiguous estimation of the first subarray af-
fects the performance of averaging and decentralized MUSIC
methods. However, our proposed algorithms are still able to
resolve the sources, since the CRs of all the subarray polyno-
mials remain unchanged.

In the previous scenarios, Algorithm I displays better
threshold performance than Algorithm II. However, Algo-
rithm II performs slightly better in the asymptotic region.
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