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ABSTRACT

Spatial smoothing is a widely used preprocessing scheme to improve

the performance of high-resolution parameter estimation algorithms

in case of coherent signals or a small number of available snap-

shots. In this paper, we present a first-order performance analysis

of Standard and Unitary ESPRIT as well as NC Standard and NC

Unitary ESPRIT for strictly second-order (SO) non-circular (NC)

sources when spatial smoothing is applied. The derived expressions

are asymptotic in the effective signal-to-noise ratio (SNR), i.e., the

approximations become exact for either high SNRs or a large sample

size. Moreover, they are explicit in the noise realizations, i.e., only

a zero-mean and finite SO moments of the noise are required. We

show that both NC ESPRIT-type algorithms with spatial smoothing

perform asymptotically identical in the high effective SNR. Also, for

the special case of a single source, we analytically derive the opti-

mal number of subarrays for spatial smoothing and show that no gain

from strictly non-circular sources is achieved in this case.

Index Terms— Performance analysis, spatial smoothing, ES-

PRIT, non-circular sources, DOA estimation.

1. INTRODUCTION AND STATE OF THE ART

ESPRIT-type parameter estimation algorithms [1], [2] have attracted

considerable attention in a broad variety of applications such as

radar, sonar, and wireless communications, due to their fully alge-

braic estimates and their low complexity. With the growing popular-

ity of parameter estimation algorithms, their analytical performance

analyses have been of great research interest. The two most promi-

nent concepts are [3] and [4]. The approach in [3] analyzes the

eigenvector distribution of the sample covariance matrix. It requires

Gaussianity assumptions on the source symbols and the noise, and

is only asymptotic in the sample size. In contrast, [4] provides a

first-order approximation of the estimation error caused by the per-

turbed subspace estimate due to a small noise contribution. Hence,

it is asymptotic in the effective signal-to-noise ratio (SNR), i.e.,

the results become accurate for either high SNRs or a large sample

size. Therefore, [4] even applies to the case of a single snapshot if

the SNR is sufficiently high. In [5]-[7], this work was extended to

multi-dimensional (R-D) parameter estimation, where the derived

MSE expressions only require the noise to be zero-mean with finite

second-order (SO) moments.

Recently, a number of improved subspace-based parameter es-

timation schemes, e.g., NC MUSIC [8], NC Root-MUSIC [9], NC

standard ESPRIT [10], and NC Unitary ESPRIT [11] have been de-

veloped that exploit prior knowledge about the source signals if they
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are strictly SO non-circular (NC) [12]. Examples include BPSK,

PAM, and ASK-modulated signals. The performance of these algo-

rithms has been investigated in [8] and [13]-[16].

The aforementioned NC and non-NC methods are known to

yield a high resolution even in the case of correlated sources. How-

ever, they encounter difficulties when the signals are coherent. As-

suming a uniform linear array (ULA), spatial smoothing [17]-[19]

can be applied to circumvent these problems by averaging the data

received by L subarrays. The resulting estimation error depends

on the choice of the design parameter L. Performance assessments

of spatial smoothing based on [3], which requires a large sample

size, have been conducted in [20]-[22]. However, expressions for

Standard and Unitary ESPRIT with spatial smoothing as well as for

NC Standard and NC Unitary ESPRIT with spatial smoothing based

on [4], which only requires a high effective SNR, have not been

reported in the literature.

In this paper, we further extend [5] and [15] and present a perfor-

mance analysis for the spatially smoothed versions of 1-D Standard

and Unitary ESPRIT as well as 1-D NC Standard and NC Unitary

ESPRIT assuming a ULA. The shift invariance equations are solved

using least squares (LS). We derive the first-order expansions of the

estimation errors that are explicit in the noise realization, and MSE

expressions, where only a zero mean and finite SO moments of the

noise are required. Thus, no assumptions about the noise statistics

are needed. We show that both NC ESPRIT-type algorithms have

the same asymptotic performance in the high effective SNR, while

NC Unitary ESPRIT performs better at low effective SNRs. Further

insights into the dependence of the MSE on the physical parameters

are provided by the case study of a single source. For this case, we

analytically find the optimal number of subarrays L for the spatial

smoothing and show that no gain from strictly non-circular sources

is obtained.

2. DATA MODEL

2.1. General Model

Assume that a ULA consisting of M isotropic elements receives nar-

rowband signals from d far-field sources. The N subsequent data

observations can be modeled as

X = AS +N = X0 +N ∈ C
M×N , (1)

where A = [a(µ1), . . . ,a(µd)] ∈ C
M×d is the array steering ma-

trix, which contains the array steering vectors a(µi) correspond-

ing to the i-th spatial frequency µi with i = 1, . . . , d. The matrix

S ∈ C
d×N represents the source symbol matrix, and N ∈ C

M×N

consists of the additive sensor noise samples. As we apply ESPRIT-

type algorithms using a ULA to estimate the parameters, the shift in-

variance J1AΦ = J2A holds, where J1 and J2 ∈ R
(M−1)×M are

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2296



the selection matrices for the first and the second subarray with max-

imum overlap, and Φ = diag{[ejµ1 , . . . , ejµd ]} ∈ C
d×d contains

the spatial frequencies to be estimated [2]. Based on (1), the signal

subspace Ûs ∈ C
M×d is estimated by computing the d dominant left

singular vectors of X . As A and Ûs span approximately the same

column space, a non-singular matrix T ∈ C
d×d can be found such

that A ≈ ÛsT . Then, the shift invariance equation can be expressed

in terms of the estimated signal subspace, yielding J1ÛsΥ ≈ J2Ûs

with Υ ≈ TΦT−1. Often, the unknown matrix Υ is estimated us-

ing least squares (LS), i.e., Υ̂ = (J1Ûs)
+J2Ûs ∈ C

d×d, where
+ stands for the Moore-Penrose pseudo inverse. Finally, the spatial

frequency estimates are obtained by µ̂i = arg{λ̂i}, i = 1, . . . , d,

where λ̂i are the eigenvalues of Υ̂.

If some of the received signals are coherent, i.e., fully corre-

lated, the symbol matrix S is singular and therefore rank deficient.

Consequently, the directions of the coherent signals cannot be esti-

mated. In this case, spatial smoothing can be applied as a prepro-

cessing scheme that restores the full row rank d of S albeit reducing

the effective array aperture. To this end, the ULA with M sensors

is divided into L maximally overlapping subarrays, each containing

Msub = M − L + 1 sensor elements. Let the selection matrix that

corresponds to the ℓ-th subarray, 1 ≤ ℓ ≤ L, be defined as

J
(M)
ℓ = [0Msub×(ℓ−1) IMsub

0Msub×(L−ℓ)] ∈ R
Msub×M . (2)

The spatially smoothed data matrix XSS, which is subsequently pro-

cessed instead of X , is given by

XSS =
[

J
(M)
1 X J

(M)
2 X · · · J

(M)
L X

]

∈ C
Msub×NL

= X0SS +NSS, (3)

where X0SS is the noise-free spatially smoothed data matrix. Note

that we require min{M − L,NL} ≥ d to estimate the d spatial

frequencies.

2.2. Strictly Non-Circular Sources

In the case of strictly SO non-circular sources, the complex symbol

amplitudes of each source lie on a rotated line in the complex plane.

Therefore, S can be written as S = ΨS0, where S0 ∈ R
d×N

is a real-valued symbol matrix and Ψ = diag{ejϕi}di=1 contains

complex phase shifts on its diagonal that can be different for each

received signal [11]. In order to take advantage of this property,

we apply a preprocessing scheme to (1) and define the augmented

measurement matrix X(nc) ∈ C
2M×N as [11]

X
(nc) =

[

X

ΠMX∗

]

= A
(nc)

S +N
(nc) = X

(nc)
0 +N

(nc), (4)

where ΠM is the M ×M exchange matrix with ones on its antidi-

agonal and zeros elsewhere. Applying a modified spatial smooth-

ing concept to (4) [11], we select 2Msub out of 2M virtual sen-

sors. Thus, the selection matrices (2) are extended to J
(M)(nc)
ℓ =

I2 ⊗ J
(M)
ℓ ∈ R

2Msub×2M . The resulting spatially smoothed data

matrix of size 2Msub ×NL is then given by

X
(nc)
SS =

[

J
(M)(nc)
1 X(nc) · · · J

(M)(nc)
L X(nc)

]

= X
(nc)
0SS

+N
(nc)
SS , (5)

where X
(nc)
0SS

is the unperturbed spatially smoothed NC data ma-

trix. Note that spatial smoothing cannot be applied before X(nc) is

formed (4) as this would destroy the structure of the source signals.

3. PERFORMANCE OF ESPRIT-TYPE ALGORITHMS
WITH SPATIAL SMOOTHING

In this section, we derive first-order error expansions of Standard

ESPRIT and Unitary ESPRIT both with spatial smoothing. Our ex-

pressions rely on the data model (3) in Section 2.1.

3.1. Standard ESPRIT with Spatial Smoothing

For the perturbation analysis of the estimation error, we adopt the

analytical framework proposed in [4] and [5]. Therein, an explicit

first-order error expansion is derived assuming that the additive noise

perturbation is small and zero-mean with finite SO moments. These

assumptions are not violated by the spatial smoothing preprocessing

such that [4] and [5] can be used for the presented development.

To derive the signal subspace estimation error for (3), we express

the SVD of the noise-free spatially smoothed observations X0SS as

X0SS =
[

USSs USSn

]

[

ΣSSs 0

0 0

]

[

VSSs VSSn

]H
, (6)

where USSs ∈ C
Msub×d, USSn ∈ C

Msub×(NL−d), as well as

VSSs ∈ C
NL×d span the signal subspace, the noise subspace, and

the row space respectively, and ΣSSs ∈ R
d×d contains the non-zero

singular values on its diagonal. Writing the perturbed signal sub-

space estimate ÛSSs
as ÛSSs

= USSs +∆USSs, where ∆USSs de-

notes the signal subspace error, we get the first-order approximation

[4]
∆USSs = USSnUSS

H
nNSSVSSsΣSS

−1
s +O{∆2}, (7)

where ∆ = ‖NSS‖, and ‖ · ‖ represents a submultiplicative norm.

For the estimation error of the i-th spatial frequency obtained by the

LS solution, we have [4]

∆µi = Im
{

p
T
i (JSS1USSs)

+ [JSS2/λi

−JSS1] ∆USSsqi}+O{∆2},
(8)

where λi = ejµi is the i-th eigenvalue of Υ, qi represents the i-
th eigenvector of Υ and the i-th column vector of the eigenvector

matrix Q, and pT
i is the i-th row vector of P = Q−1. Hence,

the eigendecomposition of Υ is given by Υ = QΛQ−1, where Λ

contains the eigenvalues λi on its diagonal. Moreover, JSS1 and

JSS2 select the subarrays with M − L out of Msub sensors.

Finally, to compute the MSE expression for Standard ESPRIT

with spatial smoothing, we extend the results in [5]. The MSE for

the i-th spatial frequency is given by

E
{

(∆µi)
2} =

1

2

(

rSS
H
i W

∗

SSR
T
SSW

T
SSrSSi

−Re
{

rSS
T
i WSSC

T
SSW

T
SSrSSi

})

+O{∆2},
(9)

where

rSSi = qi ⊗
(

[

(JSS1USSs)
+ (JSS2/λi − JSS1)

]T
pi

)

,

WSS =
(

ΣSS
−1
s VSS

T
s

)

⊗
(

USSnUSS
H
n

)

.

Next, we derive the covariance matrix RSS = E{nSSn
H
SS} and

the pseudo-covariance matrix CSS = E{nSSn
T
SS} of the spatially

smoothed noise nSS = vec{NSS} ∈ C
MsubNL×1 needed for (9).

Applying the vec-operator to NSS in (3) and using the property

vec{AXB} = (BT ⊗ A) · vec{X} for arbitrary matrices A,

B, and X of appropriate sizes, we obtain

nSS = Q · n, (10)
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where Q = [(IN⊗J
(M)
1 )T, · · · , (IN⊗J

(M)
L )T]T ∈ R

MsubNL×MN

and n = vec{N} ∈ C
MN×1. Thus, the SO statistics of nSS can be

expressed in terms of the covariance matrix Rnn = E{nnH} and

the pseudo-covariance matrix Cnn = E{nnT} of the unsmoothed

noise component n, i.e.,

RSS = blkdiag{Q} (1L ⊗Rnn) blkdiag{Q}H, (11)

CSS = blkdiag{Q} (1L ⊗Cnn) blkdiag{Q}H, (12)

where 1L is the L × L matrix of ones and blkdiag{Q} places the

blocks of Q on the block diagonal.

3.2. Unitary ESPRIT with Spatial Smoothing

It was shown in [5] that the asymptotic performance of Unitary-

ESPRIT-type algorithms is found once forward-backward-averaging

(FBA) is taken into account. FBA is performed by replacing the

spatially smoothed data matrix XSS ∈ C
Msub×NL by the column-

augmented data matrix X̃SS ∈ C
Msub×2NL defined by

X̃SS =
[

XSS Π2MX∗

SSΠN

]

= X̃0SS + ÑSS, (13)

where X̃0SS is the noiseless FBA-processed spatially smoothed data

matrix. The transformation (13) does not alter the assumptions made

in the previous subsection. Hence, the same performance analysis

framework is applicable to (13). We replace the noise-free subspaces

of X0SS in (8) by the corresponding subspaces of X̃0SS, and pi and

qi by p̃i and q̃i, respectively, to obtain

∆µi = Im

{

p̃
T
i

(

JSS1ŨSSs

)+

[JSS2/λi

−JSS1] ∆ŨSSs
q̃i

}

+O{∆2},

(14)

where the signal subspace error ∆ŨSSs
∈ C

Msub×d is given by

∆ŨSSs
= ŨSSn

Ũ
H
SSn

ÑSSṼSSs
Σ̃

−1
SSs

+O{∆2}. (15)

Similarly, expression (9) can be applied to compute the MSE for

Unitary ESPRIT with spatial smoothing by replacing all quantities

with their forward-backward-averaged equivalents. It can be shown

that ñSS = vec{ÑSS} ∈ C
2MsubNL×1 is given by

ñSS =
[

nT
SS (ΠMsubNLn

∗

SS)
T
]T

. (16)

Therefore, the expressions for R̃SS = E{ñSSñ
H
SS} and C̃SS =

E{ñSSñ
T
SS} can be derived in terms of (11) and (12) as

R̃SS = P

[

RSS CSS
C∗

SS R∗

SS

]

P
H, C̃SS = P

[

CSS RSS
R∗

SS C∗

SS

]

P
H,

where P = blkdiag{IMsubNL, ΠMsubNL}.

4. PERFORMANCE OF NC ESPRIT-TYPE ALGORITHMS
WITH SPATIAL SMOOTHING

In this section, we derive first-order error approximations of NC
Standard ESPRIT and NC Unitary ESPRIT both with spatial
smoothing for strictly non-circular sources. Our results are based on
the data model (5) in Section 2.2.

4.1. NC Standard ESPRIT with Spatial Smoothing

In [15], we have observed that the preprocessing scheme for non-
circular sources does not affect the assumptions of a small noise per-
turbation with zero-mean and finite SO moments. As a consequence,
the framework of [4] is applicable to the augmented measurement

matrix X(nc) given in (4). From the model (5), it is apparent that

adding spatial smoothing as a second preprocessing step does not
violate these assumptions either, which is also consistent with the
reasoning in Section 3.1. Therefore, the same procedure as in Sec-
tion 3.1 can be applied to the spatially smoothed augmented data

matrix X
(nc)
SS .

We are first interested in the perturbation of the subspace of

the matrix X
(nc)
0SS

superimposed by the small additive perturbation

N
(nc)
SS . Extracting the noise-free subspaces from the SVD of X

(nc)
0SS

similarly to (6), we obtain [4]

∆U
(nc)
SSs

= U
(nc)
SSn

U
(nc)H

SSn
N

(nc)
SS V

(nc)
SSs

Σ
(nc)−1

SSs
+O{∆2}. (17)

Then, correspondingly to (8), the estimation error of NC Standard
ESPRIT with spatial smoothing can be written as

∆µi = Im

{

p
(nc)T

i

(

J
(nc)
SS1

U
(nc)
SSs

)+ [

J
(nc)
SS2

/λi

−J
(nc)
SS1

]

∆U
(nc)
SSs

q
(nc)
i

}

+O{∆2},

(18)

where p
(nc)
i and q

(nc)
i replace pi and qi respectively, and the NC

selection matrices J
(nc)
SSn

, n = 1, 2, are given by J
(nc)
SSn

= I2 ⊗JSSn

for a ULA.
For the MSE, we again apply the expression (9) and replace

the corresponding quantities. The spatially smoothed augmented

noise contribution n
(nc)
SS = vec{N

(nc)
SS } ∈ C

2MsubNL×1 can be
expressed as

n
(nc)
SS = Q

(nc) · n(nc), (19)

where Q(nc) = [(IN ⊗ J
(M)(nc)
1 )T, · · · , (IN ⊗ J

(M)(nc)
L )T]T ∈

R
2MsubNL×2MN and n(nc) = K̃ · [nT,nH]T ∈ C

2MN×1 with

K̃ = KT
2M,N · blkdiag{KM,N ,KM,N · (INL ⊗ΠMsub

)} [15].

The commutation matrix KM,N ∈ R
MN×MN is the matrix

that satisfies KM,N · vec{A} = vec{AT} for arbitrary matri-

ces A ∈ C
M×N [23]. Then, R

(nc)
SS = E{n

(nc)
SS n

(nc)H

SS } and

C
(nc)
SS = E{n

(nc)
SS n

(nc)T

SS } can be computed as

R
(nc)
SS = blkdiag

{

Q
(nc)}

(

1L ⊗R
(nc)
nn

)

blkdiag
{

Q
(nc)}H

,

C
(nc)
SS = blkdiag

{

Q
(nc)}

(

1L ⊗C
(nc)
nn

)

blkdiag
{

Q
(nc)}H

,

where R
(nc)
nn = E{n(nc)n(nc)H} and C

(nc)
nn = E{n(nc)n(nc)T} are

given by [15]

R
(nc)
nn = K̃

[

Rnn Cnn
C∗

nn R∗

nn

]

K̃
H, C

(nc)
nn = K̃

[

Cnn Rnn
R∗

nn C∗

nn

]

K̃
H.

4.2. NC Unitary ESPRIT with Spatial Smoothing

We have shown in [15] and [16] that NC Standard ESPRIT and NC
Unitary ESPRIT both using LS or SLS enjoy the same analytical per-
formance in the high effective SNR. It was established that applying

FBA to the augmented matrix X(nc) does not improve the signal
subspace estimate and that the real-valued transformation has no ef-
fect on the asymptotic performance in the high effective SNR. These
properties still hold true if spatial smoothing is applied to both algo-
rithms. It can be proven that the NC signal subspace for NC Standard
ESPRIT and NC Unitary ESPRIT is modified in the same way.

5. SPECIAL CASE OF A SINGLE SOURCE

As the obtained closed-form MSE expressions for ESPRIT-type
methods with spatial smoothing are deterministic, no Monte-Carlo
simulations are required and the performance can be analyzed. How-
ever, the derived MSE expressions are formulated in terms of the
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subspaces of the noise-free data matrix and thus, provide no explicit
insights into the effect of physical parameters, e.g., the SNR, the
number of sensors M , the sample size N , etc. Knowing how the
performance scales with these system parameters can facilitate array
design decisions or the choice of estimators. To establish a generally
valid formulation is an intricate task, however, special cases can be
considered. Inspired by [5], we consider a single source captured by
a ULA with circularly symmetric white noise, i.e., Rnn = σ2

nIMN

and Cnn = 0MN . Due to space limitations, we only provide the
final result. We have derived the MSE for Standard ESPRIT with
spatial smoothing as

MSE ≈

{

1
ρ̂
· 1
(M−L)2L

if L ≤ M/2
1
ρ̂
· 1
(M−L)L2 ifL > M/2,

(20)

where ρ̂ represents the effective SNR ρ̂ = NP̂s/σ
2
n and P̂s is the

empirical source power given by P̂s = ‖s‖22 /N . Here, the number
of subarrays L is a design parameter that can be optimized. There-
fore, minimizing the MSE expression with respect to L, we obtain
Lopt = M/3 for L ≤ M/2 and Lopt = 2M/3 for L > M/2,
respectively, where we assume that M is a multiple of 3. For such
M , the asymptotic efficiency can be explicitly computed as

η(Lopt) ≈ lim
ρ̂→∞

CRB

MSE
=

8

9
·

M2

M2 − 1
, (21)

where the single-source expression for the deterministic Cramér-Rao
bound (CRB) is taken from [5]. Note that these results are in line
with the ones previously found in [22] for harmonic retrieval in time
series analysis. Interestingly, we obtain the same MSE and η for the
spatially smoothed versions of Unitary ESPRIT as well as NC Stan-
dard and NC Unitary ESPRIT. Thus, in the single source case with
spatial smoothing, no gain is achieved from FBA and non-circular
sources.

6. SIMULATION RESULTS

In this section, we provide simulation results for the presented per-
formance analysis of Standard and Unitary ESPRIT as well as NC
Standard and NC Unitary ESPRIT with spatial smoothing. We com-
pare the results found analytically to the empirical estimation errors
obtained by averaging over Monte Carlo trials. A uniform linear ar-
ray (ULA) with M = 12 isotropic elements spaced δ = λ/2 apart
is used. We assume that d = 3 sources with unit power that transmit
real-valued symbols drawn from a Gaussian distribution impinge on
the array with the spatial frequencies µ1 = 0.25, µ2 = 0.5, and
µ3 = 0.75. Moreover, we assume white Gaussian circularly sym-
metric sensor noise. The curves show the total root mean squared er-
ror (RMSE) of the empirical simulations (“emp”) for Standard and
Unitary ESPRIT (SE/UE + SS) and NC Standard and NC Unitary
ESPRIT (NC SE/UE + SS), and the square root of the analytical
MSE expression denoted as (“ana”). We also compare our results
to the deterministic CRBs for circular and strictly SO non-circular
sources [24]. The results are obtained by averaging over 5000 runs.

Fig. 1 illustrates the RMSE versus the SNR, where N = 5,
and the sources have a pair-wise correlation of ρ = 0.9. The rota-
tion phases contained in Ψ are given by ϕ1 = 0, ϕ2 = π/4, and
ϕ3 = π/2. For L, we choose the obtained optimal value Lopt =
M/3 = 4. It can be seen that the analytical results agree well with
the empirical estimation errors for high SNRs. Moreover, NC Stan-
dard and NC Unitary ESPRIT provide the lowest estimation errors
and perform asymptotically identical at high SNRs.

In Fig. 2, we display the asymptotic efficiency of the consid-
ered ESPRIT-type algorithms for a single source versus the num-
ber of sensors M for Lopt = M/3. The spatial frequency of the
single source is drawn randomly as it has no impact on the MSE.
The effective SNR is set to 46 dB, where Ps = 0 dBW, N = 4,
and σ2

n = 10−4. For comparison purposes, we include the case
when no spatial smoothing is used, i.e., L = 1, and we obtain

0 5 10 15 20 25 30 35

10
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10
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10
0
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R
M

S
E

 (
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d
)

 

 

SE SS emp
SE SS ana
UE SS emp

UE SS ana
Det CRB
NC SE SS emp

NC UE SS emp
NC SE/UE SS ana
Det NC CRB

Fig. 1. Analytical and empirical RMSEs versus SNR for M = 12, L = 4,

N = 5, and d = 3 correlated sources (ρ = 0.9) at µ1 = 0.25, µ2 = 0.5,

µ3 = 0.75 with rotation phases ϕ1 = 0, ϕ2 = π/4, ϕ3 = π/2.
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Fig. 2. Asymptotic efficiency versus M for a single source with an effective

SNR of 46 dB (Ps = 0 dBW, N = 4, σ2
n = 10

−4).

η(L = 1) = 6/M . Fig. 2 shows that the efficiency of the algo-
rithms with spatial smoothing is the same, approaching 8/9, and
considerably higher than that of those without spatial smoothing.

7. CONCLUSION

In this paper, we have developed a first-order analytical performance
assessment of spatially smoothed versions of Standard and Unitary
ESPRIT as well as NC Standard and NC Unitary ESPRIT. We have
derived first-order expansions of the estimation errors, which are ex-
plicit in the noise perturbation and asymptotic in the high effective
SNR. We have also derived MSE expressions that only assume the
noise to be zero-mean with finite SO moments. We have shown that
the NC Standard and NC Unitary ESPRIT versions perform asymp-
totically identical in the high effective SNR. However, NC Unitary
ESPRIT should be preferred due to its better performance at low ef-
fective SNRs and its lower complexity. Moreover, we have consid-
ered the single source case, for which we have analytically derived
the optimal number of subarrays L for spatial smoothing and shown
that no improvements from forward-backward averaging and non-
circular sources can be achieved in this case.
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