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ABSTRACT
Sensor arrays with Vandermonde or centro-hermitian responses

cannot always be constructed. However, such array response struc-
ture can be achieved by means of a mapping which transforms the
real array response to an array response with the desired properties
by applying array interpolation algorithms.

In this work a low-complexity, multi-sector, signal adaptive
array interpolation approach that achieves low transformation bias
in the presence of highly correlated signals is presented. Estimation
of Signal Parameters via Rotational Invariance (ESPRIT) algorithm
with Forward Backward Average (FBA) and Spatial Smoothing
(SPS) as well as model order estimation is applied after array inter-
polation in conjunction with the Vandermonde Invariance Transfor-
mation (VIT) to obtain precise high resolution estimates in closed
form. A set of numerical simulations show that the proposed ap-
proach provides precise estimates for arbitrary array responses in
highly correlated signal signal environments.

Index Terms— Array Interpolation, Array Mapping, Antenna
Arrays, Vandermonde Invariance Transformation

1. INTRODUCTION

Vandermonde or centro-hermitian array structures are of special in-
terest in DOA estimation since they allow for reduced computational
complexity with fast converging methods or even closed-form solu-
tions. Popular methods such as Iterative Quadratic Maximum Like-
lihood (IQML) [1], Root-WSF [2] and Root-MUSIC [3] all rely on
a Vandermonde or centro-hermitian array response. Another impor-
tant property a centro-hermitian array response is allowing the appli-
cation Spatial Smoothing (SPS) [4] and Forward Backward Averag-
ing (FBA) [5]. These techniques enable the application of subspace
based DOA estimation methods and precise model order estimation
in the presence of highly correlated or even coherent signals. Deal-
ing with highly correlated signals is of great importance when facing
strong multipath scenarios or in case of safety-critical applications
when specific jamming, meaconing, or spoofing is received.

To obtain an array response that is Vandermonde or centro-
hermitian is very hard in reality due to effects such as mutual
coupling of the antennas, changes in antenna location, material tol-
erances, hardware biases, and the surrounding environment of the
array. Even when the construction is possible there is no guarantee
that the response of such an array will be kept invariant over time,
e.g. due to wear and temperature stability. A solution to these lim-
itations array interpolation (mapping) was proposed [6] where an

arbitrary array response is mapped onto the desired Vandermonde or
centro-hermitian response. Most array interpolation schemes divide
the complete angular region into limited angular sectors. For each
sector a mapping/transformation matrix is defined using knowledge
of the empirical measured array response. Then after transformation
to a desired virtual array, FBA or SPS [7] and DOA estimation al-
gorithms such as Root-MUSIC [8] can be applied. However, when
performing array interpolation with a sector-by-sector processing the
mapping matrices have to be carefully derived in order to minimize
the transformation bias within each sector and on the other hand
to control its out-of-sector response. The out-of-sector response
was neglected in earlier works [7], [8], [9], [10]. Addressing the
out-of-sector response by a signal adaptive weighting and a sector-
by-sector estimation of highly correlated and closely spaced signal
environments is proposed in [11] and [12]. Furthermore, although
before the array interpolation the noise is white, after the array inter-
polation the noise becomes colored. Therefore, a prewhitening step
is necessary for MUSIC [13] and Root-MUSIC algorithms [3],[8].
Such prewhitening would destroy the shift invariance properties nec-
essary for the standard ESPRIT algorithm [14]. Array interpolation
techniques that allow the application of a modified ESPRIT algo-
rithm have been proposed in [15] and [16]. These techniques do not
require the prewhitening step, thus allowing the direct application
of the ESPRIT algorithm. However, they ignore the out-of-sector
response and they do not consider the application of FBA or/and
SPS and thus cannot be applied with highly correlated signals.

Another application of the array interpolation technique can
be seen in [17] where the Vandermonde Invariance Transformation
(VIT) was developed. The VIT does not try to address the physi-
cal imperfections of the array response but instead transforms the
response of an array with a uniform Vandermonde response into
one with a non uniform phase response. The VIT provides a noise
shaping effect by lowering the noise power over a desired angular
region and allowing a more precise DOA estimation at the cost of
increased computational load.

In this work we do not apply the classical sector-by-sector
mapping processing. Instead we propose a signal adaptive multi-
sector array interpolation method that minimizes the transformation
bias, allows dealing with highly correlated signals by applying FBA
and/or SPS, and enables closed-form DOA estimation by ESPRIT
with a generalized eigenvalue decomposition (GEVD). We derive a
single mapping matrix that considers several angular sectors which
include all the impinging signals of interest. These sectors are esti-
mated and combined by applying a power scanning method of low
complexity. The degrees of freedom of the mapping are distributed
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among the parts of the resulting combined sector following a simple
adaptive weighting method, minimizing the transformation bias.
The proposed approach avoids the out-of-sector response problems
[11], [12] and allows to jointly estimate the DOAs of all impinging
signals, while for the sector-by-sector processing for each sector a
DOA estimation has to be performed, cf. [8], [9], [10] ,[11], [12],
[15], [16]. Afterwards the VIT can be applied and followed by a
second application of ESPRIT an additional gain of approx. 2 dB in
DOA estimation performance can be achieved.

The proposed method can be applied to the vast majority of sys-
tems that rely on sensor arrays, e.g, radar systems, channel sounding
and sonars. For this work we consider Global Navigation Satellite
Systems (GNSS). In these systems the signal is constituted of a line
of sight component and highly correlated or even coherent multipath
components as well as spoofing.

2. DATA MODEL AND ARRAY INTERPOLATION

We consider a set of d wavefronts impinging onto an antenna array
composed of M antenna elements displaced on a line. The received
baseband signal can be expressed in matrix form as

X = AS + N ∈ CM×N , (1)

where S ∈ Cd×N is the matrix containing the N symbols transmit-
ted by each of the d sources, N ∈ CM×N is the noise matrix with
its entries drawn from CN (0, σ2

n), and

A = [a(θ1),a(θ2), ...,a(θd)] ∈ CM×d, (2)

where θi is the azimuth angle of the i−th signal and a(θi) ∈ CM×1

is the array response (empirical measurement).
The received signal covariance matrix RXX ∈ CM×M is given

by

RXX = E{XXH} = ARSSAH + RNN, (3)

where (�)H stands for the conjugate transposition, and

RSS =



σ2
1 γ1,2σ1σ2 · · · γ1,dσ1σd

γ∗
1,2σ1σ2 σ2

2

...
...

. . .
γ∗

1,dσ1σd γ∗
2,dσ2σd · · · σ2

d

 , (4)

where σ2
i is the power of the i−th signal and γa,b ∈ C, |γa,b| ≤ 1

is the cross correlation coefficient between signals a and b. RNN ∈
CM×M is a matrix with σ2

n over its diagonal and zeros elsewhere.
The array interpolation technique consists of finding a transfor-

mation matrix B that transforms the real array response AS for a
given countable and discrete set of angles S, called a sector, into the
desired array response ĀS . Thus, the matrix B can be seen as the
matrix that achieves the best transform between a set of vectors AS
and ĀS . The simplest solution for obtaining B is a least squares fit
via

B = ĀSA
†
S ∈ CM×M , (5)

where (�)† stands for the Moore–Penrose pseudo-inverse. The trans-
formation matrix B, however, is usually not capable of transforming
the response perfectly across the entire sector S except for the case
where a large number of antenna elements is present or a very small
sector is used. The error of the transform is defined as

ε(S) =

∥∥ĀS −BAS
∥∥

F∥∥ĀS∥∥F

∈ R+. (6)

Large transformation errors often result in a large bias on the final
DOA estimations, thus, usually, the response region is divided into a
set of regions called sectors, and a different transform matrix is set
up for each sector (sector-by-sector processing).

3. PROPOSED APPROACH

In this section a signal adaptive approach for array interpola-
tion is shown and detailed in Subsections 3.1, 3.2 and 3.3.

3.1. Power Scanning and Sector Selection

Since the array response needs to be known to construct B, such
knowledge can be used to detect angular regions where significant
power is received. This estimation can be done with the conventional
beamformer [18], yielding the normalized power response

P (θ) =
aH(θ)R̂XXa(θ)

aH(θ)a(θ)
∈ R, (7)

where R̂XX = XXH

N
is the estimate of the signal covariance matrix.

In real systems the result of (7) is discrete in θ and can be written as

P [z] = P (−90◦ + (z ·∆)) = P (θ), (8)

with θ ∈ D∆where

D∆ = {−90◦,−90◦ + ∆, ..., 90◦ −∆, 90◦} (9)

and ∆ is the resolution of the azimuth angle of the power response
(7).

The output of (7) is scanned for sectors, and for each sector the
respective lower bound lk ∈ D∆ and upper bound uk ∈ D∆ are de-
fined as shown in Figure 1. The threshold that defines a sector and its
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Fig. 1: Selected sectors and respective bounds

bounds can be defined, for instance, by looking at the noise power.
The noise floor can be set at ασ2

n, with α > 1 being a sensitivity
parameter. A large α means that only large sectors (large detected
amplitude) are detected but coming at the cost of discarding smaller
(smaller detected amplitude) sectors that are related to a signal com-
ponent, while a small α means that smaller sectors are detected but
at the cost of allowing noise to be mistakenly detected as a sector. If
K sectors are detected, a detected sector with bounds [lk, uk] is said
to be centered at

µk =

⌈
|uk − lk|

2

⌋
D∆

∈ D∆, (10)
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where d·cD∆
is a rounding operation to the domainD∆. A weighting

factor for each sector is calculated as

ξk =

∑uk
z=lk

P [z]∑K
w=1

∑uw
z=lw

P [z]
∈ R. (11)

As mentioned in Section 2, classical array interpolation methods
in the literature divide the array response into various sectors (sector-
by-sector processing) in order to keep the error (6) small. However,
in this work a single transform matrix is used based on a combination
of the sectors detected in (7). In order to bound the error ε(S) a
signal adaptive method for calculating the maximum transform size
is used based on the weights calculated in (11). For a sector centered
at µk, the discrete and countable set of angles used to transform this
sector is given by

Sk =


{⌈
µk − Ξξk

2

⌋
D∆

,
⌈
µk − Ξξk

2
+ ∆

⌋
D∆

, ...,
⌈
µk + Ξξk

2

⌋
D∆

}
,Ξξk < |uk − lk|

{lk, lk + ∆, ..., uk, Ξξk} ≥ |uk − lk|
(12)

and
Sk ∩ Sk̄ = ∅ ∀ k, k̄ ∈ {1, ...,K} and k 6= k̄, (13)

where Ξ ∈ R+ is the total transform size in degrees of all sectors.
The combined sector is given by

S = S1 ∪ S2 ∪ ... ∪ SK . (14)

Thus, S has a ”wider” support for the sectors Sk where more power
is present (weighted by ξk), i.e the transformation of the combined
sector S is weighted towards the sectors Sk that include more signal
power.

As the problem of obtaining the transform matrix B is equiva-
lent to solving a highly overdetermined system we have

|S| → ∞ ⇐⇒ ε(S)→∞. (15)

Thus, transforming the entire detected sectors may result in a very
high transformation error introducing a very large bias into the final
DOA estimates. To address this problem an upper bound to the trans-
form error εmax needs to be defined and a search can be performed
to find the maximum transform size covering the detected sectors
that is still within the error upper bound. The problem of finding the
maximum Ξ with respect to εmax can be written as the optimization
problem

max
Ξ

ε(S) (16)

subject to ε(S) ≤ εmax (17)

Ξ ≤ Ξmax =

K∑
k=1

|uk − lk| (18)

Ξ ≥ Ξmin = M∆. (19)

The problem in (16)-(19) can efficiently be solved using a bisection
search method since, once all µk have been defined, the error func-
tion increases monotonically for Ξ > Ξmin, as illustrated in Figure
2. ε(S) is greatly affected if the calculation of B is either a heavily
overdetermined or an underdetermined system. Therefore, Ξmin is
defined to ensure monotonicity of the problem given in (16).

3.2. Data Transformation

Once (16) has been solved and B has been calculated according to
(5) the transformed covariance including FBA and SPS is obtained
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Fig. 2: Transformation error with respect to combined sector size

by [7]

R̄XX =
1

2L

L∑
l=1

JT
l (BR̂XXBH + QBR̂∗XXBHQ)Jl, (20)

where (·)∗ stands for the complex conjugation, Q is a matrix con-
taining ones in its anti-diagonal and zeros elsewhere, Jl is an appro-
priate selection matrix responsible for selecting the sub-arrays to be
averaged, and L is the total number of sub-arrays employed. While
L can be chosen a priori it can also be adaptively chosen as to min-
imized the loss of effective array aperture while achieving a good
estimate of d. We use as a model order estimation (MOE) method
MOE(R̄XX(L)) = d̂ the RADOI [19]. Therefore, we have to solve
the problem

(L, d̂) = arg min
L

max
d̂

{
MOE(R̄XX(L))

}
. (21)

For multidimensional problems more accurate methods [20], [21]
can be used. It is important to notice that the estimated number of
impinging signals d̂ can be different from the number of sectors de-
tected in (7). Each of the detected sectors Sk can be formed by a set
of nearly coherent signals that now can be efficiently separated with
(21) allowing the application of a high resolution DOA estimation
method to jointly estimate the parameters of all the detected signals.

3.3. GEVD and ESPRIT

After solving the problem in (21) a joint high resolution estimate of
the DOAs can be obtained, as shown in [22], by applying the GEVD
on the FBA-SPS covariance matrix R̄XX.

R̄XXE = R̄NNEΛ, (22)

where E ∈ CM×M is a matrix containing the generalized eigenvec-
tors and Λ ∈ RM×M is a matrix containing the generalized eigen-
values in its diagonal. By selecting the eigenvectors related to the
d̂ largest eigenvalues the so called signal subspace Es ∈ CM×d̂ is
constructed. This signal subspace needs to be dewhitened or pro-
jected back onto the original response subspace prior to estimation,
this can be done by

Ēs = R̄NNEs. (23)
With this subspace estimate at hand the Total Least Squares (TLS)
ESPRIT [14] is applied. For multidimensional arrays another option
is to employ methods based on the PARAFAC decomposition such
as [23], [24].

Finally, from the first set of estimates the VIT [17] can be ap-
plied followed by d̂ extra applications of ESPRIT to obtain more
precise estimates.
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4. NUMERICAL SIMULATIONS AND DISCUSSION

To test the efficiency of the proposed approach as defined in Subsec-
tions 3.1, 3.2, and 3.3 a set of numerical simulations is performed
and results are compared to the Cramér–Rao bound (CRB) for the
true array response a(θ) and compared to the approach proposed in
[12]. In Subsection 4.1 the performance of the proposed method is
studied in the presence of spatially white Gaussian noise. In Subsec-
tion 4.2 the case where the measurement data of the array response
contains errors is studied.

4.1. Performance in the presence of white noise

The array response assumed in the simulations shown in Figure
3 is constructed by randomly displacing the elements of a Uni-
form Linear Array (ULA) composed of M = 8 antennas with
inner element spacing of λ

2
to a point belonging to a circle with

center on the original antenna position and radius 0.1λ
2

, where λ
is the wavelength of the carrier frequency of the signal. For ob-
taining R̂XX we use N = 200 snapshots and the Root Mean
Squared Error (RMSE) is calculated with respect to 1000 Monte
Carlo simulations. Three signals impinging from θ1 = 45◦,
θ2 = 38◦ and θ3 = 15◦ with σ2

1 = σ2
2 = σ2

3 = 1 and
γ1,2 = 1, γ2,3 = γ1,3 = 0.8 according to equation (4) are im-
pinging on the array. The Signal to Noise Ratio (SNR) is defined
as SNR =

σ2
1
σ2

n
=

σ2
2
σ2

n
=

σ2
3
σ2

n
. In Figures 3 and 4 the given RMSE is

RMSE =

√
1
K

∑K
k=1

(
(θ̂1,k − θ1)2 + (θ̂2,k − θ2)2 + (θ̂3,k − θ3)2

)
,

where θ̂i is the estimate of θi. The CRB shown in Figure 3 is the
sum CRB for all estimated DOAs. The two parameters that fully
define the proposed approach given in Subsections 3.1, 3.2, and
3.3 are set to α = 1.2 and εmax = 10−3.
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Fig. 3: RMSE for [12], ESPRIT and ESPRIT+VIT

In [12] a sector-by-sector processing with out-of-sector response
filtering and applying MUSIC is proposed. We use the same ap-
proach for the calculation of the transformation matrices as given
in [12] while additionally applying FBA and SPS as well as using
Root-MUSIC instead of MUSIC. Furthermore, we assumed, for the
simulations of the approach given in [12] that the model order is
perfectly known. Figure 3 shows that the estimates provided by the
approach of [12] with Root-MUSIC quickly reach a plateau for this
demanding signal scenario as the DOA estimation bias is dominated
by large transformation errors for each sector. On the other hand, the
approach proposed in this work provides improved accuracy with in-
creasing SNR since the size of the combined sector also decreases,

resulting in a much smaller transformation error. The proposed ap-
proach is still not capable of reaching the CRB due to the application
of SPS, which effectively decreases array aperture, however, L being
chosen according to (21).

4.2. Robustness to Errors in the Array Response Model

In reality the true array response is not fully known and can only be
derived by empirical measurements which include measurement er-
rors. To study a scenario where the measurements data of the array
response are corrupted by measurement errors we introduce addi-
tional positioning errors. We consider the same signal scenario as in
Section 4.1 while the SNR for this set of simulations is kept fixed
at 15 dB and the variance σ2

e of the additional errors are given in
fractions of λ

2
and range from 0.02 to 0.2.
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Fig. 4: RMSE with array response model errors

Figure 4 shows that the proposed approach provides improved
accuracy for errors drawn fromN (0, σ2

e < 0.2). Since the proposed
approach relies on the shift invariance of the array, arrays with large
unknown positioning errors (errors of empirical measurements) are
not correctly transformed into shift invariant arrays, thus, resulting
in large inaccuracies in the final estimations.

5. CONCLUSION

In this work a novel, low complexity, signal adaptive method for
DOA estimation with interpolated arrays is presented. The received
signal is used to obtain a single transform matrix instead of the tra-
ditional sector-by-sector processing. The closed form ESPRIT to-
gether with the VIT is applied without the need of explicitly pre-
withening the transformed covariance and the joint estimation of all
waveforms avoids the problem of selecting different sector estimates
(double estimates or “ghost” signals). The proposed approach can
easily be extended for multidimensional signal processing for ar-
rays with arbitrary array geometry. The proposed approach achieves
improved accuracy in DOA estimation with respect to state of the
art methods and provides robustness to errors in the array response
model.1
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