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ABSTRACT

This paper considers the exploitation of temporal correlation in inci-
dent sources in a narrowband array processing scenario. The MLE
and CRB are derived for parameter estimation of spatially uncorre-
lated first order Gaussian autoregressive source signals with additive
Gaussian spatially and temporally uncorrelated sensor noise. These
are compared to the MLE and CRB for the usual uncorrelated (WN)
sources model. The paper deals with the case where the number of
data snapshots is small. Numerical simulations show that (i) there is
no significant performance gain in the correlated signal case, and sig-
nificantly, (ii) the WN MLE performance does degrade in the pres-
ence of source correlation, which appears to be in contrast to some
recently published work.

Index Terms— array signal processing, direction-of-arrival es-
timation, autoregressive models, maximum likelihood

1. INTRODUCTION

Conventional likelihood based narrowband sensor array signal es-
timation generally assumes that the incident signals are either (i)
deterministic and unknown, or (ii) realisations of zero-mean tem-
porally uncorrelated wide-sense stationary Gaussian random pro-
cesses with known (spatial) covariance. Maximum Likelihood es-
timation (MLE) for the signals’ angles-of-arrival (AoA) for these
models is a conventional approach, and its performance has been
analysed in detail (see e.g. [2]). In particular, there is a well-known
“threshold” phenomenon whereby the performance of the MLE de-
viates markedly from the associated Cramer-Rao bound (CRB) be-
low a certain Signal-to-Noise ratio and/or number of independent
data “snapshots”. Although the MLE offers superior threshold per-
formance, its computational requirements have led to many other
approaches, such as signal subspace (e.g. ESPRIT [3]) or noise sub-
space (e.g. MUSIC [4]) based methods. These methods offer similar
performance to MLE for large number of data snapshots, but their
thresholding behaviour is significantly worse. Thus in investigating
the performance of various AoA estimators, the criteria used are the
CRB associated with the particular signal model (the best attainable
“above-threshold” performance), and the SNR, or number of snap-
shots when thresholding occurs.

1.1. Background and Motivation

In practical scenarios, the signals incident on the array may not be
well-modelled at baseband as independent (white noise) samples.
Typically, the data collection system selects a passband filter and ap-
propriate sample rate to yield Nyquist sampling for the largest band-
width signal incident on the array at the specified carrier frequency.

Other signals, which may possess smaller bandwidths, will thus gen-
erally yield correlated samples at baseband. It is therefore natural to
ask whether this correlation can be exploited in the design of an esti-
mator for all incident signals’ AoAs. Studies such as [7] have shown
that the MLE designed for independent Gaussian data samples is ro-
bust to the presence of temporal correlation in the signals’ samples,
however there are no detailed studies concerning the performance of
the MLE designed specifically for correlated signals. Some results
are available concerning the CRB for correlated signals, when the
spatio-temporal source correlation matrix is known [5], and these re-
sults show that the CRB for correlated sources is lower than that for
uncorrelated sources. However for large number of data snapshots,
the difference between these CRBs becomes smaller. The threshold-
ing behaviour of the correlated sources MLE has not been studied.
We are specifically interested in those processing scenarios where
computational complexity is not a limiting factor and that compu-
tationally intensive techniques such as the correlated sources MLE
can be justified if better performance can be obtained. It should be
pointed out at this stage, that a signal state-space based approach us-
ing the Expectation-Maximisation (EM) algorithm for ML AoA esti-
mation of general linear Gauss-Markov sources with known models,
has been proposed in [8]. This algorithm iteratively applies a fixed-
interval Kalman smoother to perform estimation of the signals, and a
likelihood based method using the resulting signal estimates to find
the AoAs.

1.2. Existing Work

Since we are interested in potential exploitation of source correla-
tion, we will focus on this issue in this paper. Source correlation was
addressed specifically as its main focus in [6] where it was concluded
that covariance based estimators designed for uncorrelated sources
(including the MLE) are robust to temporal source correlation when
the additive sensor noise is itself temporally uncorrelated (the case
considered in this paper). Methods designed to use temporal correla-
tion to advantage are described in [10] and [5], however these papers
do not consider the performance attained by an MLE specifically de-
signed for the temporally correlated sources case, but rather an ap-
proximation method which intrinsically estimates temporal source
correlation lags. However, these papers do present the CRB for the
temporally correlated source case, and show that it lower than the
corresponding CRB for the temporally uncorrelated (white) source
case. In [7], simulation results which include numerical studies of
the behaviour of the white sources based MLE when temporal cor-
relation is present, show that this MLE is indeed robust to the pres-
ence of source correlation. The paper claims that the performance
so attained is similar to that obtained “for techniques specifically de-
signed for the circumstance”. In this respect, they refer to [11] which
does not address the MLE for the temporally correlated source case,

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2281



but rather the MLE for the case where no assumptions are made on
the sources (the so-called “conditional” Gaussian data model). Thus
there is a need to consider how the correlated sources MLE does
indeed perform in comparison with the white sources MLE.

1.3. Contributions of this Paper

This paper makes the following contributions : (i) We derive a more
convenient form of the array data model and associated covariance
for Gaussian spatially uncorrelated, but possibly temporally corre-
lated sources. The additive Gaussian sensor noise is considered to
be both spatially and temporally white, with known variance. These
assumptions are made because we want to focus solely on the issue
of temporal source correlation. This model is very similar to that
of [5], but we order the source data in a different way to highlight
the temporal correlation of the sources. (ii) We derive the CRB for
the case when the sources are autoregressive processes of order one,
with unknown parameters (variance and AR parameter). The CRB
term for AOA is equivalent to that previously presented in [10] and
[5]. The CRB terms for the AR parameters in this setting are new.
(iii) We derive the form of the MLE for the AR(1) source signals
case, and examine specifically the cases where there are one, and two
incident signals. In these cases, reduction in numerical complexity
can be obtained by use of the matrix inversion lemma and Kronecker
calculus. This is important because the data covariance matrix is of
size NT , rather than N for the white sources case, and we do not
want computational complexity of O(N3T 3) as would generally be
required to evaluate the log likelihood and its derivatives. (iv) We
conduct numerical experiments to compare the performance of the
AR(1) based MLEs with their white noise source counterparts. In
particular, noting the numerical experiments reported in [7], we pro-
vide a “missing piece” of the puzzle. We can report that our results
support the conjecture that the performance of “techniques specif-
ically designed” for source correlation, in this case the proper (i.e.
matched) MLE for AR(1) sources, does not yield significantly better
performance than the case when the correct MLE is applied to un-
correlated sources. However, our results don’t conform with those
presented in [7] which appear to show that the uncorrelated sources
(WN) MLE is robust to the presence of source correlation. We did
observe some degradation in performance of the WN MLE when the
sources were AR(1) signals. This paper thus suggests that additional
work may be required in this area.

2. CORRELATED SOURCE SIGNAL MODEL

In this section, we introduce a baseband complex array data model
for Gaussian temporally correlated narrowband plane waves incident
on a sensor array for the case when the source signals are spatially
uncorrelated AR(1) signals with unknown signal parameters. For
reasons of simplicity, we assume in each case that the additive
Gaussian sensor noise is spatially and temporally uncorrelated with
known variance, although this assumption is easily relaxed with little
modification. This model is similar to that used in [5] but with the
source terms ordered in a different way to highlight their temporal
correlation. The associated covariance model is also derived.

Suppose we have a uniformly spaced linear sensor array with
N > 1 sensors, with sensor n located at position x = nd, n =
0, . . . , N − 1, along the x-axis in the (x, y) plane. Here d denotes
the sensor spacing in metres. Narrowband plane waves with centre
frequency f Hz are incident on the array. Suppose there are K such
incident waves making angles θk, k = 1, . . . ,K with respect to the

positive y direction, measured in the clockwise direction. Then the
relative phase between for signal k received at sensor n and sensor 0
is given by 2πnd sin(θk)/λ where λ = f/c is the wavelength and c
denotes the speed of the wave propagation. If we take a set of sensor
measurements simultaneously at some time t (often termed a data
“snapshot”), then the vector of complex baseband signals measured
on the sensors can be written as

x(t) =

K∑
k=1

a (θk) sk(t) + n(t) , (1)

where x(t) ∈ CN , sk(t) ∈ C is the sample of complex source signal
k at time t, and n(t) ∈ CN denotes the vector of additive noise on
the sensor array. Element n of the “steering” vector a (θ) ∈ CN

is the relative phase between sensor n and sensor 0 for signal AoA
θ. Following [5], we stack the data snapshots vertically to create a
NT dimensional vector, but in contrast to [5], we stack the sources
in temporal order first. Let sk = [sk(t1) · · · sk(tT )]T denote the
T × 1 vector of temporal samples corresponding to source signal k,
then in vector form,

x =

K∑
k=1

(IT ⊗ a (θk)) sk + n , (2)

where IT denotes the identity matrix of size T ,⊗ denotes Kronecker
product. We emphasise that the model (2) contains exactly the same
information as the model in [5], but with the source signal samples
arranged in a different way. We now assume that the sensor noise
is temporally and spatially white with known variance σ2 (an as-
sumption which is readily relaxed), and that the sources are spatially
uncorrelated with source k having T×T temporal covariance matrix
Rk. The NT ×NT array data covariance matrix then has the form

Rx =

K∑
k=1

Rk ⊗
(
a (θk) a (θk)H

)
+ σ2 INT . (3)

It is easily seen that this model can be reduced to the usual form
when the sources are temporally uncorrelated (i.e. when the matrices
Rk are diagonal). The covariance model (3) will form the basis for
the MLE and CRB to be derived in the next two sections.

3. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we derive the MLEs for the AoAs and AR(1) source
signal parameters for K incident signals on a ULA. The derivation
uses the signal model from section 2 and is relatively straightfor-
ward. The special case of a single incident AR(1) signal gives some
additional insight. We shall model the source signals s(t) and ar-
ray noise n(t) by zero-mean, stationary, circular complex Gaussian
random processes. In particular, this implies that the source covari-
ance matrices Rk are real. In the sequel, we will sometimes use the
shorthand notation ak to denote the steering vector a(θk) for source
k. We use the notation α to refer to any one of the 3K model pa-
rameters, the K AoA θk, and the variances σ2

k, and AR parameters
ρk for signal k = 1, . . . ,K, and Θ ∈ R3K to denote the vector
Θ = [θ1, σ

2
1 , ρ1, . . . , θK , σ

2
K , ρK ] to be a vector containing all these

unknown parameters. From (3), the data log-likelihood is (neglect-
ing a constant term)

logP {x} = − log detRx(Θ)− xH Rx(Θ)−1 x . (4)
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whereRx depends on the parameters Θ through (3). Thus for any of
the scalar parameters α, we have that

∂ logP {x}
∂α

= Tr

{
Rx(Θ)

∂Rx(Θ)−1

∂α

}
− xH ∂Rx(Θ)−1

∂α
x .

(5)

We can use this result to define a gradient-based maximisation
approach for finding (local) maxima of the log likelihood. In all case,
we avoid the calculation of products, determinants and inverses of
matrices of the dimension of the data vector x (i.e. NT ). This can
be done using knowledge of the special structure of the covariance
matrix Rx in (3) as we subsequently show.

3.1. Single Source Case

A circular AR(1) source s1 ∈ CT , with variance σ2
1 and AR pa-

rameter ρ1 has T × T covariance matrix with elements [R1]i,j =

E {s1(ti) s1(tj)} = σ2
1 ρ
|i−j|
1 . Its inverse is tridiagonal of known

form. In the case (K = 1) where there is a single AR(1) source
signal incident on the array at angle θ, the data covariance (3) is

Rx = R1

(
ρ1, σ

2
1

)
⊗
(
a(θ) a(θ)H

)
+ σ2 INT . (6)

We can then show, using the matrix inversion lemma (MIL) [1], that

R−1
x = σ−2

(
INT −

(
P1 ⊗

(
a(θ) a(θ)H

)))
, (7)

where
P−1
1 = N IT + σ2R−1

1 (8)

is a tridiagonal matrix which depends only on the AR(1) signal pa-
rameters and has simple derivatives with respect to these parameters.
We can then work out the derivatives of the log likelihood via (5)
to develop a gradient based numerical MLE scheme, as well as the
terms required for the CRB. Indeed, we have the NT ×NT deriva-
tive matrices

∂R−1
x

∂θ
= −σ−2 P1 ⊗

(
d(θ) a(θ)H + a(θ) d(θ)H

)
,

∂R−1
x

∂ρ1
= σ−2

(
P1

∂P−1
1

∂ρ1
P1

)
⊗
(
a(θ) a(θ)H

)
,

∂R−1
x

∂σ2
1

= σ−2

(
P1

∂P−1
1

∂σ2
s

P1

)
⊗
(
a(θ) a(θ)H

)
, (9)

where d(θ) = da(θ)/dθ. The log-likelihood can be evaluated in
O(T 3) + O(N2T 2) calculations because the eigenvalues of Rx in
(6) have a simple form, so log detRx has a closed form in terms
of the eigenvalues of R1. The three derivatives of the log-likelihood
can also be evaluated inO(T 3)+O(N2T 2) from (5)-(9) using Kro-
necker calculus, which avoids multiplication of large matrices.

3.2. Two Source Case

In the two source case, we can again avoid inversion or determinant
evaluation of Rx by using the matrix inversion lemma twice. Write

A1 = (IT ⊗ a1) R1

(
IT ⊗ aH1

)
+ σ2INT , and

Rx = A1 + (IT ⊗ a2) R2

(
IT ⊗ aH2

)
.

Then A−1
1 is computed in O(T 3) +O(N2T 2) operations as in 3.1,

where P1 is specified by (8). Applying the MIL again gives

R−1
x = σ−2 (INT −Q1 −Q2 +Q2,1 +Q1,2 −Q1,2,1) ,

Qj = Pj ⊗
(
aj a

H
j

)
, j = 1, 2,

Qj,k = (Pj Pk)⊗
((
aHj ak

)
aj a

H
k

)
, j, k = 1, 2,

Q1,2,1 = (P1 P2 P1)⊗
(
|aH2 a1|2 a1 aH1

)
,

and P−1
2 = N IT − |aH2 a1|2 P1 + σ2R−1

2 . Thus R−1
x can be com-

puted in O(T 3) +O(N2T 2) operations.

4. CRAMER-RAO BOUND FOR AR(1) SIGNALS CASE

The Cramer-Rao bound (CRB) for AoA estimation with general tem-
porally correlated sources was specifically derived in [10] and is
based on a result from [12]. This result, in turn, is based on a general
result for parameter estimation for complex Gaussian data which ap-
pears in general form in [13]. We shall apply the latter formula for
the elements of the Fisher information matrix FI

[FI(Θ)]i,j = Tr

{
∂Rx

∂Θi
R−1

x
∂Rx

∂Θj
R−1

x

}
, (10)

where the array data covarianceRx, and consequently FI is regarded
as a function of the parameter vector Θ. In the general case, eval-
uation of (10) requires O(N3T 3) operations. although in the one
and two source cases, we can use the simplified forms presented in
section 3 to reduce this computation to O(T 3) + O(N2T 2). How-
ever, unlike the numerical maximisation of the log-likelihood which
involves multiple evaluations of the log-likelihood (and its deriva-
tives, if a gradient based scheme is used), we need only evaluate
(10), a total of 3K(3K + 4)/2 times, and then perform the inverse
of a 3K × 3K matrix to get the CRB terms for each specified val-
ues of the model parameters Θ. The values of the derivatives follow
(3), where the derivatives of Rk are easily found from its elements
[Rk]i,j = σ2

k ρ
|i−j|
k .

5. NUMERICAL EXAMPLES

In these examples, we use the scenario of [7] for comparison pur-
poses. In this scenario, we have a N = 20 element, half-wavelength
spaced ULA with K = 2 spatially uncorrelated, zero-mean circular
complex Gaussian sources incident on the array at angles θ1 = 16◦

and θ2 = 18◦ embedded in zero-mean, spatially and temporally
uncorrelated additive circular complex Gaussian sensor noise with
known variance σ2. Signal-to-Noise ratio (SNR) (for signal k) is
defined as the ratio of the source signal variance σ2

k to the additive
noise variance σ2. We are uncertain as to the definition of SNR used
in [7]. The number of data snapshots was fixed at T = 40.

5.1. Properties of the AR(1) based MLE - single signal case

In the first example, we considered only a single source incident
from θ = 16◦. We computed the CRBs for the 3 parameters (AoA
θ, AR co-efficient ρ1 and noise variance parameter σ2

1). Using 500
independent trials, we estimated the standard deviation of the MLEs
under each model. Figure 1 shows the AoA MLE estimation errors
and CRBs for an AR(1) source with ρ = 0.9, and an uncorrelated
source. We observe a slightly smaller CRB for the AR(1) sources
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Fig. 1. Figure shows the MLE performance and CRBs for a single
source incident for the AR(1) and WN source cases.

case and a small SNR threshold extension of approximately 1 dB for
this example.

We were then motivated to examine robustness issues associated
with ML estimation. It was reported in [7], that the uncorrelated
signals MLE appeared robust to the presence of temporal correla-
tion (see figures 3(a) and 3(b) of [7]). We decided to try and verify
this observation as it has bearing on the applicability of the AR(1)
MLE, given the behaviour shown in figure 1. Figure 2 shows the per-
formance of the uncorrelated signal MLE on both the uncorrelated
signal (as shown in figure 1) and when the same MLE is applied
to an AR(1) signal of identical power, with parameter ρ = 0.9. A
reduction in thresholding performance of about 2 dB is observed.
This doesn’t support the observations of [7], however our assess-
ment here is for a single signal. We’ll see in the following section,
that for 2 sources, the uncorrelated signal MLE is also sensitive to
source correlation, however it is difficult to compare with [7] as the
latter doesn’t plot the two curves on the same graph. Our results do
suggest however, that when combining the results evident from fig-
ures 1 and 2, the use of the AR(1) MLE yields approximately 3 dB
threshold extension for a single incident signal compared to using
the uncorrelated signal MLE, when indeed the signal is AR(1) with
(unknown) ρ = 0.9. Of course, the AR MLE requires significantly
more computation, so shouldn’t be used if it is known a priori that
the source is uncorrelated.

Fig. 2. Figure shows the estimated standard deviation for the un-
correlated signal ML estimates for the cases when the source sig-
nal is uncorrelated (matched), and when it an AR(1) signal with
ρ = 0.9 (mismatched). Figure also shows the CRB for the uncorre-
lated source case.

5.2. Properties of the AR(1) based MLE - two sources

In this section, we compare the performance of the correlated
sources MLE to the uncorrelated sources MLE when there are
two incident source signals as described above. Figure 3 shows
the AoA angle accuracy (averaged for both signals) for the MLE,
and CRB for each model. Performance of each is similar, although
it appears that the AR(1) MLE is not efficient for this number of
snapshots over the SNR range considered.

Fig. 3. Figure shows the average estimated standard deviation for the
WN and AR(1) signal ML estimates for two source signals having
identical SNR. The figure also shows the CRBs for each model.

Figure 4 examines the robustness of the WN MLE in the pres-
ence of correlated signals. A degradation in performance when the
sources are correlated is noted.

Fig. 4. Figure shows the average estimated standard deviation for
WN ML estimates for the cases when the two source signals are (i)
WN (matched), and (ii) AR(1) signals having identical SNR (mis-
matched).

6. CONCLUSION

In this paper, we have proposed a signal model for temporally cor-
related Gaussian narrowband signals incident on a sensor array. The
CRB and MLE for spatially uncorrelated first-order AR signals have
been derived, and compared to those for the uncorrelated sources
(WN) case. Numerical simulations show that whilst the AR based
MLE does not achieve significant improvement over the WN case
when the correct MLEs are used, the WN MLE loses performance
when the signals are correlated, which appears to differ to that re-
ported recently in [7]. More investigation is required on this point.
Various extensions to this approach are possible including studying
temporal correlation in the sensor noise [6], higher order AR sources,
spatial signal/noise correlation and threshold analyses.
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