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ABSTRACT
In this paper, we consider the source localization for a mixed

near-field (NF) and far-field (FF) narrowband signals im-

pinging on a uniform linear array (ULA) with the symmet-

rical geometric configuration. A computationally efficient

direction-of-arrivals (DOAs) and range estimation method

for the mixed NF and FF signals is proposed, where the

DOAs of the NF and FF signals are estimated separately,

and the computationally burdensome eigendecomposition is

avoided. Comparing to some existent methods, the proposed

method can separate the NF signals from the FF signals more

efficiently, and consequently the estimation performance is

improved. The effectiveness of the proposed method is veri-

fied though numerical examples.

Index Terms— Source localization, far-field, near-field,

uniform linear array, direction-of-arrival.

1. INTRODUCTION

The source localization is a fundamental problem in radar,

sonar, wireless communication, seismic exploration and so

on (e.g., [1] and references therein), and many algorithm-

s have been developed to deal with either the far-field (FF)

signals [2, 3] or the near-field (NF) signals [4, 5], respective-

ly. In many application scenarios of sources localization such

as speaker localization using microphone arrays [6,7], the NF

and FF signals may coexist. Hence the source localization and

classification of the mixed NF and FF signals have received

considerable attention recently.

By utilizing the properties of the higher-order statistics

(HOS) (i.e., cumulant), and some methods were develope-

d to localize the mixed NF and FF of non-Gaussian signal-

s [8–11]. In these methods, the main step is to form a special

cumulant matrix, which only contains the direction-of-arrival

(DOA) information of mixed signals, and from this result-

ing cumulant matrix, the DOA estimates are obtained firstly.

Then the range estimation is easily obtained, where an addi-

tional DOA association procedure is needed. However, the

HOS-based methods require high computational complexity
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for constructing cumulant matrix. A new second-order statis-

tics (SOS) based differencing method was developed in [12],

where the crux is to eliminate the contribution of the FF sig-

nals and additive noise for localizing NF signals. Unfortu-

nately, the structure property of the covariance matrix of inci-

dent signals is required, which is only valid for large number

of snapshots. By utilizing the advantage of a symmetric uni-

form linear array (ULA), some SOS-based methods [13, 14]

were proposed to localize the mixed NF and FF signals. These

methods have low computational burden and use a subjective

criterion, which distinguishes the NF and FF signals by DOAs

or ranges estimation, to determine the type (i.e., NF or FF) of

the incident signals. Additionally, the oblique projection [15],

which projects the measurement onto a low-rank subspace a-

long a non-orthogonal subspace, was used to separate the in-

cident signals [13]. Although it outperforms the differenc-

ing one, it possesses a “saturation behavior” for localizing

the NF signals. Moreover these SOS-based methods afore-

mentioned require a computationally intensive procedure of

eigendecomposition.

Therefore, we propose a more computationally efficient

method for localizing the mixed NF and FF incident signals

impinging on the ULA with the symmetrical geometric con-

figuration. By taking the advantage of the oblique projector, a

new covariance matrix which only contains the information of

the NF signals is formed, then the anti-diagonal elements of

this resulting matrix are used to estimate the DOA of the NF

signals. Although the oblique projector was used for separat-

ing the mixed signals in [13], in this paper, we present a more

efficient way to calculate it. Furthermore in order to over-

come the “saturation behavior” encountered by the differenc-

ing and the oblique projection based methods for localizing

the NF signals, an alternating iterative method is developed.

Finally, the effectiveness of the proposed method is verified

through some numerical examples.

2. DATA MODEL AND BASIC ASSUMPTIONS

As shown in Fig. 1, we consider K noncoherent narrow-

band signals {sk(n)} impinging on the ULA consisting

of 2M + 1 omnidirectional sensors with spacing d, and

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2276



without loss of generality, we assume the first K1 incident

signals {sk(n)}K1

k=1 are the FF ones with the locations of

{(∞, θk)}K1

k=1, while the other K2 signals {sk(n)}Kk=K1+1

are the NF ones with the locations of {(rk, θk)}Kk=K1+1,

where K = K1 + K2. By letting the center of the ULA be

the phase reference point, the received noisy array data can

be expressed in a vector-matrix form as

x(n) = Afsf (n) +Ansn(n) +w(n)

= As(n) +w(n) (1)

where x(n) � [ x−M (n), x−M+1(n), · · · , xM−1(n),
xM (n)]T , w(n) � [w−M (n), w−M+1(n), · · · , wM−1(n),
wM (n)]T , sf (n) � [s1(n), s2(n), · · · , sK1(n)]

T , sn(n) �
[sK1+1(n), sK1+2(n), · · · , sK(n)]T , and s(n) � [sf (n)

T ,

sn(n)
T ]T , while A is the array response matrix given by A �

[Af ,An], Af � [af (θ1),af (θ2), · · · ,af (θK1)], An �
[an(rK1+1, θK1+1),an(rK1+2, θK1+2), · · · ,an(rK , θK)],
and the response vectors for the FF and NF signals are defined

as af (θk) � [e−jMωk , · · · , e−jωk , 1, ejωk , · · · , ejMωk ]T ,

and an(rk, θk) � [ejτ−Mk , · · · , ejτ−k , 1, ejτk , · · · , ejτMk ]T ,

where ( · )T denotes transpose. Furthermore the phase de-

lay of the FF signals ωk is defined as ωk � −2πd sin θk/λ,

where φk � πd2 cos2 θk/(λrk), and λ is the wavelength of

incident signals, while by using the so-called Fresnel approx-

imation, the phase delay of the NF signals τmk is given by

τmk � ωkm + φkm
2 for m = −M, · · · ,−1, 0, 1, · · · ,M ,

where φk � πd2 cos2 θk/(λrk).

In this paper, we make the following assumptions: 1) The

array is calibrated and the array response matrix A has full

rank. 2) The incident signals {sk(n)} are zero-mean wide-

sense stationary random processes and are uncorrelated each

other. 3) The additive noises {wi(n)} are temporally and s-

patially complex white Gaussian random process with zero-

mean and variance σ2 and are independent to the incident sig-

nals {sk(n)}. 4) The numbers of the incident NF and FF sig-

nals K1 and K2 are known, and the number of all incident

signals K satisfies the relation K < M + 1.

3. NEW METHOD FOR SOURCE LOCALIZATION

Under the basic assumptions, from (1), we can obtain the ar-

ray covariance matrix R of the received data as

R � E{x(n)xH(n)}
= AfRsfA

H
f +AnRsnA

H
n + σ2I2M+1

= R̄+ σ2I2M+1 (2)

where R̄ is the noiseless array covariance matrix defined by

R̄ � ARsA
H = R − σ2I2M+1, Rsf and Rsn are the co-

variance matrix of the FF or NF signals defined by Rsf �
E{sf (n)sHf (n)} and Rsn � E{sn(n)sHn (n)}, while Rs �
E{s(n)sH(n)} = blkdiag(Rsf ,Rsn), E{w(n)wH(n)} =
σ2I2M+1, blkdiag( · ) and ( · )H denotes block diagonal ma-

trix operator and the Hermitian transpose, and Im is a m×m
identity matrix.
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Fig. 1. The ULA with the symmetrical geometric configura-
tion.

3.1. DOA Estimation of FF Signals
Firstly, we can divide the array response matrix A in (1) into

two submatrices as

A =

[
A1

A2

]}K
}2M+1−K.

(3)

Under the basic assumptions, we can find that there exist a

K×(2M+1−K) linear operator P between A1 and A2 [3],

i.e.,

A2 = PHA1 (4)

or

[PH ,−I2M+1−K ]A = QHA = O(2M+1−K)×K (5)

where Op×q denotes a p × q null matrix. Then from (5), we

easily have

QHan(r, θ) = 0(2M+1−K)×1 (6)

QHaf (θ) = 0(2M+1−K)×1. (7)

Secondly, to get the noiseless covariance matrix R̄, we need

to estimate the noise variance. By considering the partition

R =

K 2M+1−K[
R11 R12

]
K

R21 R22 2M+1−K

(8)

then the noise variance σ2 can be obtained by [16]

σ2 =
tr{R22Π}
tr{Π} (9)

where Π = I2M+1−K − R21R
†
21, tr{·} denotes the trace

operator, and ( · )† denotes the Moore-Penrose pseudoinverse.

Furthermore, we can also divide R̄ into two parts as R̄ =
[G,H], in which G and H consist of the first K or the last

2M+1−K columns. Thus, when the number of snapshots is

finite, the DOAs {θk}K1

k=1 of the FF signals can be estimated

by minimizing the following cost function

gf (θ) = aH
f (θ)ΠQ̂af (θ) (10)

where ΠQ̂ = Q̂(Q̂
H
Q̂)−1Q̂

H
= Q̂(I2M+1−K−P̂

H
(P̂ P̂

H

+IK)−1P̂ )Q̂
H

, P̂ = (Ĝ
H
Ĝ)−1Ĝ

H
Ĥ , and Q̂ = [P̂

T
,

−I2M+1−K ]T , while ΠQ̂ is calculated using the matrix in-

version lemma implicitly [17].

3.2. DOA Estimation of NF Signals
By using the DOAs of the FF signals, from (2), we have a

(2M + 1)× (2M + 1) matrix as

Ro � R̄Π⊥
Af

= AnRsnA
H
n Π⊥

Af
(11)
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where Π⊥
Af

� I2M+1 −Af (A
H
f Af )

−1AH
f . By employing

the QR decomposition of Ro as Ro = Q̃R̃, we can obtain

the oblique projector EAf |An
in the following manner

EAf |An
= Af (Q̃2Q̃

H

2 Af )
† (12)

where Q̃2 is the last 2M + 1 − K2 columns of the Q̃ [18].

Then from (2) and (12), a array covariances matrix Rn corre-

sponding to the NF signals can be obtained

Rn � AnRsnA
H
n

= (I2M+1 −EAf |An
)R̄(I2M+1 −EAf |An

)H(13)

where it’s anti-diagonal element rn(i) is given by

rn(i) � (Rn)i,2M+2−i =
K∑

k=K1+1

r2ske
−j2(M+1−i)ωk (14)

where i = 1, 2, · · · , 2M + 1, and r2sk is the power of the

kth NF signal defined by r2sk � E{sk(n)s∗k(n)}, where ( · )∗
denotes the complex conjugate. The element rn(i) only con-

tains the DOA information of the NF signals. Then we can

construct a new (M + 1) × (M + 1) covariance matrix like

the FF Toepliz covariance matrix [19] as follows

R̄n�

⎡
⎢⎢⎢⎣
rn(M + 1), . . . , rn(2), rn(1)
rn(M + 2), . . . , rn(3), rn(2)

...
. . .

...
...

rn(2M + 1), . . . , rn(M + 2), rn(M + 1)

⎤
⎥⎥⎥⎦ (15)

After some simple algebraic manipulations, it can be rewrit-

ten in a more compact form as

R̄n = Ān(θ)RsnĀ
H
n (θ) (16)

where Ān(θ) � [ān(θ1), · · · , ān(θK1)]
T , and ān(θk) �

[1, ejωk , · · · , ej2Mωk ]T . In a similar way to the above, we

can also divide Ān(θ) into two submatrices as

Ān(θ) =

[
Ān1(θ)
Ān2(θ)

]}K2

}M+1−K2

(17)

where Ān1(θ) is of full rank, and the rows of Ān2(θ) can

be expressed as a linear combination of the rows of Ān1(θ).
Hence there exist a K2 × (M + 1 − K2) linear operator P̄
between Ān1(θ) and Ān2(θ) [3]

Ān2(θ) = P̄
H
Ān1(θ) (18)

or

[P̄
H
,−IM+1−K2 ]Ān(θ) = Q̄

H
Ān(θ) = O(M+1−K2)×K2

(19)

Then we have

Q̄
H
Ān(θ) = 0(M+1−K2)×1. (20)

Similarly, we can divide R̄n into two parts as R̄n = [Ḡ, H̄],
in which Ḡ and H̄ are two submatrices consisting of its first

K2 or the last M+1−K2 columns. Thus when the number of

snapshots is finite, the DOAs {θk}Kk=K1+1 of the NF signals

can be estimated by minimizing the following cost function

fn(θ) = āH
n (θ)Π ˆ̄Q

ān(θ) (21)

where Π ˆ̄Q
= ˆ̄Q( ˆ̄QH ˆ̄Q)−1 ˆ̄QH = ˆ̄Q(IM+1−K2− ˆ̄PH( ˆ̄P ˆ̄PH

+IK2)
−1 ˆ̄P ) ˆ̄QH , ˆ̄P = ( ˆ̄GH ˆ̄G)−1 ˆ̄GH ˆ̄H , and ˆ̄Q = [ ˆ̄P T ,

−IM+1−K2 ]
T .

3.3. Range Estimation of NF Signals
Once we get the DOA estimates of the NF signals, the ranges

can be found from (6). In the case of the finite number of

snapshots, {rk}Kk=K1+1 can be estimated in the Fresnel re-

gion (i.e., rf ⊂ (0.62(D3/λ)1/2, 2D2/λ)) by minimizing the

following cost function

f̄n(r) = aH
n (r, θ̂)ΠQ̂an(r, θ̂). (22)

where D is the aperture of the array [5], and the estimated

range {r̂k}Kk=K1+1 and the estimated DOAs {θ̂k}Kk=K1+1 are

automatically paired without any additional procedure.

3.4. Alternating Iterative Scheme for NF Signals
In the DOA estimation of the NF signals, we need to calcu-

late the oblique projector EAf |An
, where the block diagonal

structure of signal covariance matrix Rs and the anti-diagonal

elements of Rn are exploited. Unfortunately, when the num-

ber of snapshots is finite, Rs may be not block diagonal, and

the anti-diagonal elements of Rn contain not only the infor-

mation of the NF signals but also that of the FF signals. Then

from (11), we can see that

R̂o = AnR̂snA
H
n Π⊥

Af
+AfR̂sfnA

H
n Π⊥

Af
(23)

where R̂sfn = (1/N)
∑N

n=1 sf (n)s
H
n (n). It is obvious that

the range space of R̂o is not strictly equal to the range space

of An due to the existence of R̂sfn. As a result, we can-

not get the exactly estimation of EAf |An
by using (12), and

R̂sfn is not affected by the additive noise, which means that

even the the signal-to-noise ratio (SNR) tends to infinity, the

influence of R̂sfn still exists. Hence in the localization of the

NF signals, the estimation error doesn’t decrease with the in-

creasing SNR, which is so-called “saturation behavior” [18].

To cope with this problem, we propose an alternating iterative

scheme for localizing the NF signals.

When the DOAs of the FF and NF signals and the ranges

of the NF signals are estimated from (10), (21), and (22), we

can recalculate the oblique projector [15] as

EAf |An
= Af (A

H
f Π⊥

An
Af )

−1AH
f Π⊥

An
(24)

then we can refine the estimation of the DOAs and ranges of

the NF signals with (13), (15), (21) and (22). By repeating

these steps serval times, the saturation problem is solved.

3.5. Implementation of Proposed Method
When the N snapshots of array data are available, the im-

plementation of the proposed method can be summarized as

follows:

1) Calculate the estimates of covariance matrices R in (2) as

R̂ =
1

N

N∑
n=1

x(n)xH(n) (25)
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Fig. 2. RMSEs of the DOA estimates versus SNR.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32(2M + 1)2N flops

2) Estimate the DOAs of the FF signals by using (10).

. . 8(2M + 1)3 + 8K(2M + 1−K)2 + 8K2(2M + 1)
+8(2M + 1)(2M + 1−K)2 + 16K2(2M + 1−K)

+2(2M + 1−K)2 + 2K2 +O(K3)
+4M2 +O(8M3) flops

3) Calculate the matrix R̄ in (2) with (8) and (9).

. . . 8(2M + 1−K)3 + 16(2M + 1−K)K2 +O(K3)
+8(2M + 1−K)2K + 2(2M + 1−K)2

+4(2M + 1−K) + 2(2M + 1)2 flops

4) Calculate the oblique projector EAf |An
in (12).

. . . 22(2M + 1)3 + 32K2
1 (2M + 1) + 16(2M + 1)2K1

+16(2M + 1)2(2M + 1−K2) + 22(2M + 1)
+32K1(2M + 1)(2M + 1−K2)− 5

−4(2M + 1)2 +O(K3
1 ) flops

5) Estimate the new covariance matrix R̄n in (15).

. . . . . . . . . . . . . . . . . 16(2M + 1)3 + 4(2M + 1)2flops

6) Estimate the DOAs of the NF signals with (21).

8(M +1)3+8(M +1)(M +1−K2)
2+2K2

2 +O(K3
2 )

+8K2(M + 1−K2)
2 + 2(M + 1−K2)

2

+8K2
2 (M + 1) + 16K2

2 (M + 1−K2)
+M2 +O(M3) flops

7) Estimate the ranges of the NF signals with (22).

. . . 8K2(M + 1)(2M + 1)2 + 8K2(M + 1)2(2M + 1)
+K2M

2flops

In the above implementation, the computational complexity

of each step is roughly indicated in terms of the number of

MATLAB flops, and the computational complexity of the pro-

posed method is nearly 32(2M + 1)2N + 84(2M + 1)3 +
16(M +1)3flops, when 2M +1 � K, which occurs often in

application of source localization.
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Fig. 3. RMSEs of the DOA estimates versus snapshots.

4. NUMERICAL EXAMPLES

In this section, we evaluate the performance of the proposed

method in localizing the mixed NF and FF signals by using

a ULA consisting of N = 7 sensors with element spacing

d = λ/4. Two signals with equal power arrive from the loca-

tions (∞,−5◦) and (1.7λ, 25◦), where the first one is the FF

signal and the second one is the NF signal. Meanwhile, the

behavior of the SOS–based algorithm [13] and the Cramer-

Rao lower bound (CRB) [13] are also presented. The results

in each of the examples below are obtained from 500 inde-

pendent Monte Carlo trails, where SNR is defined as the ratio

of the signal power to the noise variance at each sensor.

Example 1–Performance versus SNR: The number of s-

napshots is N = 200. In Fig. 2, we can see that the DOA

estimates of the mixed signals are obtained separately. The

performance of the proposed FF estimator is almost same as

the SOS-based algorithm, while the proposed NF estimator is

super better than it, especially at the high SNR. Furthermore,

the saturation problem is efficiently solved by alternating it-

erative procedure.

Example 2–Performance versus Number of Snapshots:
The SNR is fixed at 0dB, and the number of snapshots varies

from 10 to 1000. The results are shown in Fig. 3. It can be

observed that for both the FF and NF signals, the proposed

method behaves better than the SOS-based algorithm.

5. CONCLUSION

Based on the SOS and the oblique projector technique, this

paper proposes a new method for the mixed FF and N-

F sources localization problem without multidimensional

search, HOS and eigendecomposition. The examples show

that the estimates of the parameters of both FF and NF sig-

nals are reasonably good. Meanwhile, the proposed method

is computationally efficient, and achieves a classification of

the source types without extra procedure.
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