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ABSTRACT

The purpose of this paper is to give a closed form expres-

sion of the RMS (Root Mean Square) error of the estimated

DOA (Direction Of Arrival) for multi-parametric MUSIC in

presence of a modeling error. The multi-parametric MUSIC

approach, [1] firstly introduced by [2] in polarization diver-

sity context, estimates with a subspace approach the sources

DOAs jointly to the nuisance parameters such as the polar-

ization vector. The results are based on a second order ap-

proximation of the multi-parametric criterion with respect to

modeling errors. DOA estimation errors is then an Hermitian

form of multi-variate complex random variables. Theoretical

results are validated by simulations in the context of coherent

multi-paths in polarizations diversity.

Index Terms— DOA estimation, polarization , coherent

paths, performances, modeling error

1. INTRODUCTION

The subspace-based estimation of direction of arrival of radio-

electric sources using an array of spatially distributed anten-

nas has been intensively studied these last decades with MU-

SIC algorithm [3]. The paper focuses on the performances

of such algorithms in multi-parameters context [1][11] where

the DOAs have to be jointly estimated with some nuisance

parameters. Indeed in some applications, the steering vector

can be factorized with respect to DOA and nuisance param-

eters allowing a concentration of the MUSIC criterion with

respect to the DOA. This approach based on an optimization

of a quadratic form [4] has been first introduced with array of

antennas in diverse polarization [2]. Other distortions of the

wave-front have also been considered such as coherent local

scattering on DOA [5] and self calibration [6][1] of mutual

coupling coefficients [7]. The approach can also be used also

in the context of coherent multi-paths [8][9] where the nui-

sance parameters are the multi-paths amplitudes and where

their directions are jointly estimated. Thus, the algorithm

[1] is able to mix these different distortions in a single nui-

sance vector that can be composed by mutual coupling co-

efficients, polarization coefficients or amplitudes of coherent

multi-paths.

The theoretical performances of [1] in presence of mod-

eling error have been proposed in [10] in a context of non

coherent multi-paths with a two components nuisance vec-

tor. The numerical results have been given for self calibration

where a single mutual coupling coefficient is estimated jointly

to source direction. The theoretical approach in [10] can be

extended to a nuisance vector with more than two compo-

nents. However, it will conduct to inextricable calculations

and expressions. Thus, the purpose of this paper is to give

these performances with an other approach in order to obtain

tractable results independently of the length of the nuisance

vector. In addition, these theoretical results are extended to

coherent multi-paths context where the directions of a set of

coherent multi-paths must been jointly estimated. In order to

calculate the theoretical performances of the multi-parametric

MUSIC [1], a local Taylor expansion of the associated crite-

rion is first proposed to obtain a closed form expression of the

DOAs error. In a second step, the second order approximation

of the MUSIC noise projector with respect to modeling errors

of [12] is used. The DOAs estimation error can then be writ-

ten as an Hermitian form of multi-variate complex random

variables where the associated statistics are given by [12].

2. SIGNAL MODELING AND PROBLEM

FORMULATION

According to the modeling of [8], the signal at the output

of an array of antenna is a noisy mixture of R uncoherent

sources associated to a set of coherent multi-paths. The as-

sociated observation vectors, x (t), whose components xn (t)
(1 ≤ n ≤ N) are the complex envelopes of the signals at the

output of the antennas, is thus given by

x (t) =

R
∑

i=1

b̃ (Θi, ηi) si (t) + n (t) = B̃ s (t) + n (t) (1)

where s (t)= [s1 (t) · · · sR (t)]
T

(T denotes the transpose op-

erator), B̃ =[b̃1 · · · b̃R] with b̃i = b̃ (Θi, ηi), si (t) is the
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complex envelope of the ith source, n (t) is a spatially white

noise vector and b̃ (Θi, ηi) is the steering vector of the ith

coherent set, such that

b̃ (Θi,ηi) =
Pi
∑

p=1
αpiã

(

θpi,ϕpi

)

where Θi = [θ1i · · · θPii]
T

, ηi = [α1i×ϕ
T
1i · · ·αPii×ϕ

T
Pii

]T

and θpi is the direction of the pth multi-paths, αpi the attenu-

ation and ϕpi the associated nuisance parameters that can be

the path polarization. The estimation problem under consid-

eration is to jointly estimate the directions θpi for 1 ≤ p ≤ Pi

of each coherent paths set with the multi-parametric MU-

SIC algorithm [1] in presence of modeling error. The multi-

parametric steering vector of a set of P coherent paths is

b (Θ,η) =
P
∑

i=1

αia (θi,ϕi) = V (Θ) η

V (Θ) =
[

U (θ1) · · · U (θP )
]

η =
[

α1 (ϕ1)
T

· · · αP (ϕP )
T

]T

(2)

where a (θi, ϕi) = U (θi)ϕi is the steering vector of a single

path such that ‖a (θi, ϕi)‖
2

= a (θi, ϕi)
H

a (θi,ϕi) = N
(H denotes the transpose and conjugate). If the polarization

is the only nuisance, the parameters vector ϕi is the 2 × 1
polarization vector. The steering vector modeling errors ei of

the ith set of coherent sources is then

ei = b̃ (Θi,ηi) − b (Θi, ηi) =

Pi
∑

p=1

αpiepi (3)

where epi is the modeling error of the steering vector a (θi, ηi)
of a single path such that epi = ã(θpi,ϕpi) − a(θpi,ϕpi). In

these conditions the matrix B̃ only depends on the modeling

error vectors ei for 1 ≤ i ≤ R such that

B̃ = B + E with E =
[

e1 · · · eR

]

where B = [b1 · · ·bR] with bi= b (Θi, ηi). The covariance

matrix Rx (E) of the observation x (t) is exact and the de-

pendence with E is clearly stated such that

Rx (E) = E

[

x (t)x (t)
H

]

= B̃RsB̃
H + σ2IN

where Rs = E[s (t) s (t)
H

] is full rank, E[n (t)n (t)]H =
σ2IN and IN denotes the N ×N identity matrix and E[.] the

mathematical mean. The eigenvalue decomposition of the co-

variance matrix is then Rx (E) =
∑N

i=1 λiwi (wi)
H

where

λ1 ≥ · · · ≥ λN are the eigenvalues associated to the eigen-

vectors wi. The vectors wi for 1 ≤ i ≤ R span the signal

subspace of the columns of B̃ and the vectors wi+R span

the noise subspace such that wi+R and the steering vectors

b̃ (Θi, ηi) are orthogonals. The noise projector is then

Π (E) =

N
∑

i=R+1

wi (wi)
H

= IN − B̃
(

B̃HB̃
)−1

B̃H (4)

where b̃ (Θi, ηi)
H

Π (E) b̃ (Θi,ηi) = 0. Then, the multi-

parametric MUSIC algorithm minimizes the projection of the

steering vector b (Θ,η) on the noise projector Π (E) in order

to estimate (Θ̂i, η̂i) for 1 ≤ i ≤ R. According to (2) and

[4][1], the previous optimization can be concentrated in Θ as

Θ̂i = min
Θi

(JE (Θ)) (5)

JE (Θ) = kHQ1(Θ)k
kHQ2(Θ)k

(6)

Q1 (Θ)k = JE (Θ)Q2 (Θ)k (7)

Q1 (Θ) = V (Θ)
H

Π (E)V (Θ)

Q2 (Θ) = V (Θ)
H

V (Θ)

(8)

where JE (Θ) is the minimum eigenvalue of (Q2 (Θ))
−1

Q1 (Θ)
and k is the associated eigenvector. The eigenvector k is an

estimate of ηi for Θ = Θ̂i. Without modeling error (where

b̃ (Θi, ηi)=b (Θi, ηi)), the DOA error ∆Θi = Θ̂i − Θi is

null, because the projection of the steering vector b (Θi,ηi)
to the noise projector Π (E = 0) is null and then the criterion

JE (Θi) is null. In presence of modeling error the DOA error

∆Θi 6= 0 is not null. Thus, the purpose of this paper is to

evaluate the statistics of the vector ∆Θi = [∆θ1i · · ·∆θPii]
T

such as the RMS error
√

E[(∆θpi)2] of the pth path of the

ith coherent set where ∆θpi = θ̂pi − θpi.

The first step is to propose a local Taylor expansion of

the quadratic criterion JE (Θ,ηmin) in section 3 in order to

obtain a link between ∆Θi and the noise projector Π (E).
According to the results of [12], a link between ∆Θi and the

modeling error E is established in section 4 in order to deduce

the statistics of the DOA error.

3. TAYLOR EXPANSION OF THE

MULTI-PARAMETRIC MUSIC CRITERION

The Taylor expansion of the criterion JE (Θ) needs a closed

form expression of its differentials. At the second order, the

criterion JE (Θ) is

JE (Θi + ∂Θ) = JE (Θi)+∂JE (Θi)+
1

2
∂2JE (Θi)+o

(

‖∂Θ‖
2
)

(9)

where ∂JE (Θi) and ∂2JE (Θi) are the first and second or-

der differential of JE (Θ). Assuming that the eigenvector k

verify kHk = 1, we deduce that ∂kHk + kH∂k = 0 noting

that ∂k is the differential of k. Using in addition the relation

Q1 (Θ)k = JE (Θ) (Q2 (Θi)k), the first order differential

∂JE (Θ) is then

∂JE (Θ) = J̇1(Θ) − JE(Θ) J̇2(Θ)
J2(Θ) (10)

Jp (Θ) = kHQp (Θ)k J̇p (Θ) = kH∂Qp,Θk (11)
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where ∂Qp,Θ is the first order differential of Qp (Θ). The

criterion Jp (Θ) and J̇p (Θ) can be rewritten as














J1 (Θi) = bH
i Π (E)bi

J2 (Θi) = bH
i bi

J̇1 (Θi) = 2ℜ
(

bH
i Π (E) ∂bi

)

J̇2 (Θi) = 2ℜ
(

bH
i ∂bi

)

(12)

{

bi= b (Θi, ηi)

∂bi= V̇i ∂Θ
(13)

{

V̇i =
[

ȧ1i · · · ȧPii

]

ȧpi = αpi
∂(a(θi,ϕi))

∂θpi
= αpiU̇ (θpi)ϕpi

(14)

where ℜ (.) denotes the real part, U̇ (θ) is the first deriva-

tive of U (θ) and ∂Θ = [∂θ1i · · · ∂θPii]
T . According to

(12)(13)(14) and noting that JE (Θi) = J1 (Θi) /J2 (Θi), the

first differential ∂JE (Θ) only depends on ∂Θ as

∂JE (Θi) = (∇i(E))T ∂Θ
J2(Θi)

(15)

(∇i (E))
T

= 2ℜ
(

bH
i Π (E)

(

IN −
bib

H
i

bH
i

bi

)

V̇i

)

(16)

where the gradient ∇i (E) depends on the modeling error.

The second order differential of the criterion JE (Θ) is

deduced from (10) and (7) by using the differential of the re-

lation (7). Finally, after some algebraic manipulations, the

second order differential of JE (Θ) is

∂2JE (Θ) = J̈E(Θ) + 2∂kH Hk(Θ) ∂k

J2(Θ) (17)

J̈E (Θ) = J̈1 (Θ) − JE (Θ) J̈2 (Θ) − 2∂JE (Θ) J̇2 (Θ)

Hk (Θ) = JE (Θ)Q2 (Θ) − Q1 (Θ)

J̈i (Θ) = kH∂2Qi,Θk (18)

where ∂2Qp,Θ is the second order differential of Qp (Θ). As

Π (E)bi is closed to zero for small modeling error E, thus

the assumption |ℜ
(

∂2bH
i Π (E)bi

)

| << ∂bH
i Π (E) ∂bi is

verify where ∂2bi is the second order differential of bi. Un-

der the previous approximation, the criterion J̈p (Θ) becomes

J̈1 (Θi) ≈ 2ℜ
(

∂bH
i Π (E) ∂bi

)

J̈2 (Θi) ≈ 2ℜ
(

∂bH
i ∂bi

)

(19)

According to (14) and (19), the second order differential

∂2JE (Θ) only depends on ∂Θ as

∂2JE (Θi) = ∂ΘHHi(E)∂Θ + 2∂kH Hk(Θ) ∂k

J2(Θi)
(20)

Hi (E) = 2ℜ

(

V̇H
i Π (E) V̇i − JE (Θi) V̇

H
i V̇i

−
(∇i(E)ℜ(bH

i V̇i))
bH

i
bi

)

(21)

where Hi (E) is the Hessian with respect to the vector Θi

associated to the directions of the ith set of coherent multi-

paths. The Hessian Hi (E) depends on the modeling error.

According to (9)(16) and (20), the DOA error is

∆Θi ≈ ∂Θ = − (Hi (E))
−1

∇i (E) (22)

where ∂Θ is close to ∆Θi = Θ̂i −Θi. As the steering vector

bi verify Π (E)bi = 0 without modeling error for E = 0,

the expression (16) shows that ∇i (E = 0) = 0. The purpose

is now to obtain a link between ∆Θi and the modeling error

matrix E.

4. PERFORMANCES IN PRESENCE OF MODELING

ERRORS

According to (22) the link between the DOA error ∆Θi and

the modeling error E is not linear and need a Taylor expan-

sion. The second order approximation of ∆Θi with respect to

E is

∆Θi ≈ − (Hi0)
−1

∇
(2)
i (E) + ∆Θ

(b)
i (23)

∆Θ
(b)
i = 2 (Hi0)

−1
∆Hi (Hi0)

−1
∇

(1)
i (24)

where Hi0 = Hi (E = 0), ∆Hi = H
(1)
i − Hi0, ∇

(r)
i and

H
(r)
i are the rth order approximation of ∇i (E) and Hi (E)

respectively. According to [12], the first order approximation

of Π (E) is Π(1) (E) = Π0+∆Π where ∆Π =∆U+∆UH ,

∆U = −Π0B
#E , B# = (BHB)−1BH and Π0 =

Π (E = 0). Thus, at the first order the criterion JE (Θ)
is null and according to (21),

Hi0 = 2ℜ
(

V̇H
i Π0V̇i

)

where Π0 = Π (E = 0)

∆Hi = 2ℜ

(

V̇H
i ∆Π V̇i −

(

∇
(1)
i

ℜ(bH
i V̇i)

)

bH
i

bi

)

The DOA error ∆θpi of the pth path is associated to the pth

component of ∆Θi. According to (23), ∆θpi is

∆θpi ≈ −

Pi
∑

j=1

(

H−1
i0

)

[p,j]

(

∇
(2)
i

)

[j]
+ 2∆θ

(b)
pi (25)

∆θ
(b)
pi =

Pi
∑

m,n,o=1

(

H−1
i0

)

[p,n]

(

H−1
i0

)

[m,o]
(∆Hi)[n,m]

(

∇
(1)
i

)

[o]

where (H)[i,j] is the ijth component of the matrix H and

(h)[i] is the ith component of the vector h. According to

(14)(16) the components of ∇
(r)
i and ∆Hi are

(

∇
(r)
i

)

[j]
= 2ℜ

(

(

ḃji

)H

Π(r) (E)bi

)

(26)

(∆Hi)[n,m] = 2ℜ
(

ȧH
ni ∆Π ȧmi

)

− 4ℜ
(

ḃH
ni ∆Πċmi

)

ḃji =
(

IN −
bib

H
i

bH
i

bi

)

ȧji ċmi =
(biℜ(bH

i ȧmi))
bH

i
bi

where Π(r) (E) is the rth order approximation of the noise

projector Π (E) such that Π(1) (E)bi = ∆Πbi. The results
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of [12] show that

vHΠ(2) (E)u=ε
HQ(u,v) ε (27)

Q(u,v)=





q −qH
12 0T

−q21 Q22 Q23

0 Q32 Q33



 and ε=





1
e

e∗





where ε = [1 eT eH ]
T

e=[eT
1 ...eT

R]T , q= vH Π0 u, q12=

Φ(u,v), q21= Φ(v,u), Φ(x,y)= (
(

B#x
)∗

⊗ (Π0y)) ,

Q22=Ψ(B#, B#, Π0) , Q23=Ψ(B#, Π0, (B#)H ) P, Q32=

PH Ψ(Π0, B#,B#) , Q33= PH Ψ(Π0, Π0, B#B#H ) P,

Ψ(X,Y,Z)= ((Xv)
∗
(Yu)

T
) ⊗ Z , ⊗ is the Kronecker prod-

uct and P the permutation matrix such that: vec(ET )=Pvec(E).

According to (27), the product
(

vH∆Πu
) (

ṽH∆Πũ
)

is

4ℜ
(

vH∆Πu
)

ℜ
(

ṽH∆Πũ
)

= ε
H∆Q

(ũ,ṽ)
(u,v) ε (28)

∆Q
(ũ,ṽ)
(u,v) = Q

(ũ,ṽ)
(u,v) + Q

(ṽ,ũ)
(u,v) + Q

(ũ,ṽ)
(v,u) + Q

(ṽ,ũ)
(v,u)

Q
(ũ,ṽ)
(u,v)=





0 0T 0T

0 q21q̃
H
12 q21q̃

T
21

0 (q21)
∗
q̃H

12 (q21)
∗
q̃T

21





where q̃12= Φ(ũ, ṽ), q̃21= Φ(ṽ, ũ). According to (26)(28)

(∆Hi)[n,m]

(

∇
(1)
i

)

[o]
= ε

H∆Qi
nmoε

∆Qi
nmo = ∆Q

(ḃoi,bi)
(ȧni,ȧmi)

− 2∆Q
(ḃoi,bi)

(ḃni,ċmi)

According to (25), the DOA error ∆θpi can be rewritten as

∆θpi = ε
HQpi ε with Qpi = −Q

(a)
pi + 2Q

(b)
pi (29)

Q
(a)
pi =

Pi
∑

j=1

(Hi0)
−1
[p][j]

(

Q
(

ḃji,bi

)

+ Q
(

bi, ḃji

))

(30)

Q
(b)
pi =

Pi
∑

m,n,o=1

(

H−1
i0

)

[p,n]

(

H−1
i0

)

[m,o]
∆Qi

nmo (31)

According to [12], the RMS RMSpj =
√

E[(∆θpi)2] of the

DOA estimation error ∆θpi can be written as (RMSpj)
2 ≈

trace(Q⊗2
pi R

(4)
ε ) where R

(4)
ε =E

[

ε
⊗2

ε
⊗2H

]

, v⊗2 = v ⊗ v

and trace(.) is the trace. In the case of a circular Gaussian

distribution of ε , the RMS of ∆θpi only depends on Rε =
E

[

εε
H

]

as

RMSpj ≈

√

trace
(

(QpiRε)
2
)

− trace (QpiRε)
2

(32)

where Rε = E
[

εε
H

]

and (Rε)[1,1] = 1. In presence of

multi-paths with zero mean and independent modeling error

such that E
[

epie
H
pi

]

= (σe)
2
IN where

∥

∥a(θpi, ϕpi)
∥

∥

2
=

N and
∑

i (αpi)
2
, the covariance is E

[

eie
H
i

]

= (σe)
2
IN

according to (3) and the matrix Rε verify (Rε)[i,j 6=i] = 0

and (Rε)[i,i] = (σe)
2

for 1 < i ≤ 2NR + 1.

5. SIMULATIONS

A uniform circular array with N/2 = 7 antennas of radius λ
is used in simulation. Each antenna is composed of two col-

located orthogonal loops of responses cos (θ + αi) for 1 ≤
i ≤ 2 for a first polarization (α1 = 0◦ and α2 = 90◦)

and sin (θ + αi) for a second polarization. The first source

is the combination of two coherent multi-paths of directions

θ11 = 60◦ and θ21 = 150◦ with α21 = α11/10 in presence

of a second source of direction θ12. The modeling error is

σe = 0.12 and the polarization verifies ϕpi[1] = ϕpi[2]. In

Figure.1, the root mean square error RMS11 of the first path

of the first source is represented with respect to the direction

θ12 of the second source. The theoretical (32) and simulated

performances of the multi-parametric MUSIC with unknown

polarization are compared to the theoretical performances of

(Weighting subspace fitting) WSF [13] given by [14] where

the polarization is assumed to be known. The results show in

one hand that the performances of the multi-parametric MU-

SIC are correctly predicted and in a second hand it gives a

tool to compare the performances with other algorithms such

as WSF. The simulations show that the performances of multi-

parametric MUSIC are correctly predicted for coherent multi-

paths in polarization diversity and that the WSF algorithm is

more accurate than the multi-parametric MUSIC because the

polarization is assumed to be known.

Fig. 1. RMS11 of the path of direction θ11 = 60◦ in presence

of a coherent path and a 2nd source of directions θ21 = 150◦

and θ12 respectively. (σe = 0.12)
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6. CONCLUSIONS

Theoretical performances of multi-parametric MUSIC algo-

rithm in presence of modeling errors [1] is proposed inde-

pendently to the length of the nuisance vector. In addition

the context of coherent multi-paths is considered and allows

a comparison with others algorithms such as WSF [13] or co-

herent MUSIC [8][9] where the nuisance vector is composed

only by the amplitudes of coherent multi-paths.
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[1] A. Ferréol, E. Boyer, and P. Larzabal, “A low cost

algorithm for some bearing estimation methods in

the presence of separable nuisance parameters,” Elec-

tronic.Letters, vol. 40, pp. 966–967, July 2004.

[2] E. R. Ferrara and T. M. Parks, “Direction finding with

an array of antennas having diverse polarizations,” IEEE

Trans. Antennas. Propagation., vol. 31, pp. 231–236,

Mar. 1983.

[3] R. O. Schmidt, A signal subspace approach to multiple

emitter location and spectral estimation. PhD thesis,

Stanford University, Stanford, CA, Nov. 1981.

[4] F. Gantmacher, The theory of matrices. Chelsa: Vol I-II,

1959.

[5] D. Asztely and B. Ottersten, “The effects of local scat-

tering on Direction of Arrival estimation with MUSIC,”

IEEE Trans. Signal Processing, vol. 47, pp. 3220–3224,

Dec. 1999.
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