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ABSTRACT 

Recently, the 2q-MUSIC (q ≥ 2) direction finding algorithm  

has been developed for non-Gaussian sources and square 

arrangements of the 2qth-order data statistics, to overcome 

the main limitations of MUSIC and to improve the 

performance of 4-MUSIC for multiple sources. To further 

improve the performance of the 2q-MUSIC algorithm, the 

purpose of this paper is to extend the latter to rectangular 

arrangements of the data statistics, giving rise to rectangular 

2q-MUSIC algorithms. It is shown in particular that 

rectangular arrangements of the higher order (HO) data 

statistics allow to optimize the compromise between 

performance and maximal number of sources to be 

processed. Besides, it also allows a complexity reduction for 

a given level of performance. These results, completely new, 

should open new perspectives for HO array processing. 

Index Terms— Higher order, Virtual Array, Rectangular, 

Arrangements, 2q-MUSIC.

1. INTRODUCTION 

Fourth-Order (FO) direction finding methods, such as 4-

MUSIC [1], have been developed for more than two decades 

for non-Gaussian sources, to overcome the limitations of 

second-order (SO) methods, such as MUSIC [2]. Recently, 

in order to still increase the performance of 4-MUSIC, the 

MUSIC method has been extended to an arbitrary even 

order 2q (q ≥ 1) for square arrangements of the 2qth-order 

data statistics, giving rise to the so-called 2q-MUSIC 

algorithm [3]. It has been shown in [3] that 2q-MUSIC 

offers increasing performance with q, in terms of resolution, 

robustness to modelling errors and the number of sources to 

be processed. This performance increase is directly linked to 

a virtual increase of both the effective aperture and the 

number of sensors, N, of the array, introducing the HO 

virtual array (VA) concept presented in [4]. It has been 

proved in [4] that 2q-MUSIC can process up to O(N
q
) 

sources. Furthermore, it has been shown recently in [5] that 

by arranging the 2qth order data statistics in a (N2qx1) 

vector, c2q,x, it is possible to build a non uniform linear array 

of N identical sensors, called 2q-level nested array, giving 

rise to a 2qth order VA corresponding to a uniform linear 

array of O(N
2q

) virtual sensors. Using a spatial smoothing 

algorithm [6], it is then possible to estimate the directions of 

arrival (DOA) of O(N2q) sources, instead of O(N
q
), from the 

“covariance like” matrix c2q,x c2q,x
H, where H means 

transpose and conjugate. This result generates a more 

general question consisting in wondering whether it may be 

useful in practice to consider arbitrary rectangular 

arrangements of the HO data statistics instead of square ones 

for HO direction finding from an arbitrary array of sensors 

and not specific ones only. The purpose of this paper is 

precisely to answer this important question by extending, for 

arbitrary arrays of sensors, both the HO VA concept and the 

2q-MUSIC algorithm to arbitrary rectangular arrangements 

of the 2qth order data statistics, giving rise to rectangular 

2q-MUSIC algorithms. It is shown in particular that 

rectangular arrangements of the HO data statistics allow to 

optimize the compromise between performance and maximal 

number of sources to be processed. Besides, it also allows a 

complexity reduction for a given level of performance. 

These results, completely new, should allow the 

development of new methods for HO array processing.  

2. HYPOTHESES AND DATA STATISTICS  

2.1. Hypotheses and notations 

 We consider an array of N narrow-band (NB) sensors 

and we call x(t) the vector of complex amplitudes of the 

signals at the output of these sensors. Each sensor is 

assumed to receive the contribution of P zero-mean 

stationary NB sources corrupted by an additive noise. We 

assume that the P sources can be divided into G groups, 

with Pg sources in the group g, such that the sources in each 

group are assumed to be statistically dependent, but not 

perfectly coherent, while sources belonging to different 
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groups are assumed to be statistically independent. Of 

course, P is the sum of the Pg over all the groups. Under 

these assumptions, the observation vector can be written as 

follows 

    x(t)  ≈ �
P

p = 1

sp(t) ap + n(t)  =  �
G

g = 1

Ag sg(t)  +  n(t)       (1)     

where n(t) is the noise vector, assumed zero-mean and 

Gaussian and sp(t), independent of n(t), is the complex 

amplitude of source p. Furthermore, Ag is the (N x Pg) 

matrix of steering vectors of sources belonging to the gth 

group and sg(t) is the corresponding (Pgx1) source vector. 

Without any coupling between sensors and for a plane wave 

propagation, component n of vector ap can be written as 

apn  =   exp{j2π k(θp, ϕp)T pn / λ}         (2) 

Here, λ is the wavelength, pn =
∆

 [xn, yn, zn]T is the vector of 

the coordinates of sensor n, k(θp,ϕp) =
∆

 [cos(θp)cos(ϕp), 

sin(θp)cos(ϕp), sin(ϕp)]T is the wave vector of source p, and

(θp, ϕp) are the azimuth and elevation angles of source p. 

2.2. Statistics of the data  

 The HO methods discussed in this paper exploit the 

information contained in the 2qth order circular cumulants 

of the data, Cum[xi1(t),…, xiq(t), xiq+1(t)*, …, xi2q(t)*] (1 ≤
i
j

≤ N) (1 ≤ j ≤ 2q). The latter entries have been arranged in 

square matrices in [4] and [3]. These entries will be 

arranged in this paper in rectangular matrices giving rise, in 

the next sections, to the extended HO VA concept and the 

rectangular 2q-MUSIC algorithm, respectively. In situations 

of practical interest, the HO statistics of the data have to be 

estimated from K data samples, x(k) =
∆

x(kTe), 1≤ k ≤ K, 

where Te is the sample period, using empirical estimators 

presented in [4] and [3].

3. RECTANGULAR ARRANGEMENTS OF THE 

DATA STATISTICS  

  In order to arrange the data 2qth order circular 

cumulants into rectangular matrices, we introduce two 

arbitrary integers, v and l, such that 0 ≤ v ≤ 2q and       

sup(0, v – q) ≤ l ≤ inf(v, q). The integer v controls the size 

(N
v
 x N

2q−v
) of the rectangular 2qth order cumulant matrix 

(as will be seen lateron, in practice only arrangements for 

which v ≥ q are of interest). The integer l controls the way 

the data statistics are arranged in the rectangular cumulant 

matrix. More precisely, for given values of q and v, let us 

arrange the 2q–uplet, (i1,.., iq, iq+1,.., i2q), of indices ij (1 ≤ j

≤ 2q) (1 ≤ ij ≤ N), into one v-uplet and one (2q-v)-uplet, 

indexed by v and l, and defined by (i1, i2,…., il, iq+1,…., 

iq+v-l) and (iq+v-l+1,…, i2q, il+1,…., iq) respectively. As the 

indices ij (1 ≤ j ≤ 2q) vary from 1 to N, the two latter v-uplet 

and (2q-v)-uplet take N
v
 and N

2q-v
 values respectively. We 

number, in a natural way, the N
v
 values of the v-uplet and 

the N
2q-v

 values of the (2q-v)-uplet by the integers Iv,l and 

Jv,l respectively, such that 1 ≤ Iv,l ≤ N
v 

and 1 ≤ Jv,l ≤ N
2q-v

. 

Using the permutation invariance of the cumulants, we 

deduce that Cum[xi1
(t),…, xiq

(t), xiq+1
(t)*, …, xi2q

(t)*] = 

Cum[xi1
(t),…, xil

(t), xiq+1
(t)*, …, xiq+v-l

(t)*, xiq+v-l+1
(t)*,.., 

xi2q
(t)*, xil+1

(t),.., xiq
(t)], where * means complex 

conjugate. Assuming that this term is the element [Iv,l, Jv,l] 

of the rectangular cumulant matrix denoted as C
(v,l)
2q,x, it is 

easy to verify, from section 2.1 and for a Gaussian noise, 

that the (N
v
 x N

2q-v
) C

(v,l)
2q,x  matrix can be written as  

     C
(v,l)
2q,x  = �

G

g = 1

  [Ag
⊗l ⊗ Ag

*⊗(v – l)] C
(v,l)

2q,sg
  [ Ag

⊗(q – v + l) 

                    ⊗ Ag
*⊗(q – l)]H + η2 V(v, l) δ(q − 1).          (3)

Here, C
(v,l)
2q,sg

 is the (Pg
v
 x Pg

2q-v
) matrix of the 2qth order 

circular cumulants of sg(t), η2 is the mean power of the 

noise per sensor, V(v, l), defined for q = 1 only, is the (N
v
 x 

N
2-v

) (0 ≤ v ≤ 2) normalized rectangular spatial coherence 

matrix of the noise such that the total input power of the 

noise is Nη2, δ(.) is the Kronecker symbol, ⊗ is the 

Kronecker product and Ag
⊗l is the (N

l
x Pg

l
) matrix defined 

by Ag
⊗l  =

∆  Ag⊗Ag⊗.....  ⊗Ag with a number of Kronecker 

product equal to l – 1. In particular, for v = q, C
(v,l)
2q,x,  

reduces to the (N
q
 x N

q
) square matrix C

(q,l)
2q,x, used in [3] 

where it is denoted by C2q,x(l). 

4. RECTANGULAR 2Q-MUSIC ALGORITHMS  

4.1. Hypotheses 

To develop the rectangular 2q-MUSIC algorithms for 

the arrangement C
(v,l)
2q,x, we introduce some hypotheses: 

 H1 :  Pg < N , 1 ≤ g ≤ G

 H2 : Ag
⊗l⊗Ag

*⊗(v – l) and Ag
⊗(q–v+l)⊗Ag

*⊗(q – l) have a 

rank equal to Pg
Min(v, 2q−v), 1 ≤ g ≤ G  

 H3 : P(G, q, v)  =
∆ �

G

g = 1

Pg
Min(v, 2q−v)  < N Min(v, 2q−v)     

 H4 : A
−(v,l)

q,1 =
∆

 [A1
⊗l⊗A1

*⊗(v – l),.., AG
⊗l⊗AG

*⊗(v – l)] and 

A
−(v,l)

q,2 =
∆

 [A1
⊗(q–v+l)⊗A1

*⊗(q – l),.., AG
⊗(q–v+l)⊗AG

*⊗(q – l)] 

have rank P(G, q, v)    

In particular, for statistically independent sources (G = P), 

P(G, q, v) = P, Ag reduces to ag and H1 to H4 reduce to 

 H1’:  P < NMin(v, 2q−v)   

 H2’: A
−(v,l)

q,1 =
∆

 [a1
⊗l⊗ a1

*⊗(v – l),.., aP
⊗l⊗ aP

*⊗(v – l)] and 

A
−(v,l)

q,2  =
∆

  [a1
⊗(q–v+l) ⊗ a1

*⊗(q – l),.., aP
⊗(q–v+l) ⊗ aP

*⊗(q – l)] 

have full rank P   

4.2. Rectangular 2q-MUSIC algorithm

 The matrix C
(v,l)

2q,sg
 has full rank, Pg

Min(v, 2q−v), in general 

since the components of sg(t) are statistically dependent. 

We then deduce from H1 to H4 that, for q > 1, C
(v,l)
2q,x has a 

rank equal to P(G, q, v). To build a MUSIC-like algorithm 
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from C
(v,l)
2q,x for q > 1, we first compute the singular value 

decomposition (SVD) of the latter, given by 

  C(v,l)
2q,x = [U(v,l)

2q,s U
(v,l)
2q,n] 

�
�
�

�
�
�Σ

(v,l)
2q,s

           
O

(v,l)
2q,1

O
(v,l)
2q,2        Σ

(v,l)
2q,n �

�
�

�
�
�V

(v,l)
2q,s

H

V
(v,l)
2q,n

H

  (4)     

where Σ
(v,l)
2q,s is the (P(G, q, v) x P(G, q, v)) diagonal matrix 

of the nonzero singular values of C
(v,l)
2q,x, U

(v,l)
2q,s  and V

(v,l)
2q,s  are 

the (N
v

x P(G, q, v)) and (N2q−v
x P(G, q, v)) unitary 

matrices of the left and right singular vectors of C
(v,l)
2q,x  

associated with the P(G, q, v) non zero singular values 

respectively, O
(v,l)
2q,1 and O

(v,l)
2q,2 are the (P(G, q, v) x (N2q−v −

P(G, q, v))) and the ((Nv − P(G, q, v)) x P(G, q, v)) null 

matrices respectively, Σ
(v,l)
2q,n is the ((Nv− P(G, q, v)) x (N2q−v

− P(G, q, v))) diagonal matrix of the zero singular values of

C
(v,l)
2q,x, U

(v,l)
2q,n and V

(v,l)
2q,n, such that U

(v,l)
2q,s

HU
(v,l)
2q,n = O

(v,l)
2q,2 and 

V(v,l)
2q,s

HV(v,l)
2q,n = O(v,l)

2q,1, are the (Nv
x (Nv− P(G, q, v))) and 

(N2q−v x (N2q−v − P(G, q, v)))  unitary matrices of the left 

and right singular vectors of C
(v,l)
2q,x associated with the zero 

singular values. As Span{U
(v,l)
2q,s} = Span{A

−(v,l)
q,1 }, we deduce 

that all the columns of all the matrices Ag
⊗l⊗Ag

*⊗(v – l), 1 ≤
g ≤ G , are orthogonal to all the columns of U(v,l)

2q,n. Let aig be 

the steering vector of the ith source in the gth group. Then 

the vector aig
⊗l⊗ aig

*⊗(v – l) corresponds to one column of 

Ag
⊗l⊗ Ag

*⊗(v – l). Hence, all vectors {aig
⊗l⊗ aig

*⊗(v – l)
, 1 

≤ i ≤ Pg, 1 ≤ g ≤ G} are orthogonal to the columns of U
(v,l)
2q,n

and are solutions of the following equation  

    [a⊗l⊗a*⊗(v – l)
]
H U

(v,l)
2q,n U

(v,l)
2q,n

 H [a⊗l⊗a*⊗(v – l)]  =  0  (5)         

which corresponds to the heart of the rectangular 2q-

MUSIC algorithm for the arrangement C
(v,l)
2q,x, called 2q-

MUSIC(v, l). In practice, U
(v,l)
2q,n has to be estimated from the 

observations and the DOAs of the sources may be found by 

searching for the minima of the left hand side of (5). 

5. PROPERTIES AND PERFORMANCE OF 

RECTANGULAR 2Q-MUSIC ALGORITHMS  

5.1. Hypotheses 

The best properties and performance of 2q-MUSIC(v, l), 

are obtained for statistically independent sources [3], which 

are considered in section 5, and for which (3) reduces to 

   C
(v,l)
2q,x  = �

P

p = 1

c2q,sp 
a

(v,l)
q,p,1 a

(v,l)
q,p,2

H
 + η2 V(v, l) δ(q − 1)   (6) 

Here, c2q,sp
=
∆

Cum[si1
(t),…, siq

(t), siq+1
(t)*, …, si2q

(t)*], 

with i
j
 = p (1 ≤ j ≤ 2q), is the 2qth order circular 

autocumulant of sp(t), a
(v,l)
q,p,1 =

∆
[ap

⊗l⊗ap
*⊗(v − l)] and a

(v,l)
q,p,2

=
∆

 [ap
⊗(q−v+ l)⊗ap

*⊗(q –  l)].  

5.2. Performance of 2q-MUSIC algorithms 

 We deduce from (6) that each source p contributes to 

C
(v,l)
2q,x through a rank one matrix c2q,sp

a
(v,l)
q,p,1 a

(v,l)
q,p,2

H whose 

left and right vectors, a
(v,l)
q,p,1 and a

(v,l)
q,p,2, correspond to the 

(Nvx1) left and (N2q−vx1) right virtual steering vectors of 

source p for the considered array of sensors. It has been 

shown in [4] that a
(v,l)
q,p,1 and a

(v,l)
q,p,2 can be considered as true 

steering vectors of the source p but for two VA of Nv and 

N2q−v virtual sensors (VS), called hereafter left and right 

VA respectively. The positions of the left and right VS are 

defined respectively by    

     �
l

j = 1

pkj 
− �

v − l

u = 1

pkl+u 
and   �

q-v+l

j = 1

pkj 
− �

q − l

u = 1

pkq−v+l+u       
(7)

where 1 ≤ kj ≤ N for 1 ≤ j ≤ jmax with jmax= v and  jmax= 

2q−v for the left and right VA respectively. These concepts 

of left and right VA extend to rectangular arrangements 

C
(v,l)
2q,x the HO VA concept introduced in [4] for square 

arrangements C
(q,l)
2q,x for which the left and right virtual 

steering vectors and VA coincide. As 2q-MUSIC(v, l) aims 

at identifying the vectors a
(v,l)
q,p,1, 1 ≤ p ≤ P, from the DOA 

estimates of the sources, the performance of 2q-MUSIC(v, 

l) for multiple sources is directly controlled by the left VA 

associated with C
(v,l)
2q,x. This result generates a consequence 

enlightening the interest of rectangular arrangements with 

respect to square ones. Indeed, considering two integers q1
and q2 such that 1≤ q2 < q1 ≤ 2q2 and choosing l such that 

q1 − q2 ≤ l ≤ q2, it is straightforward to verify that a
(q1,l)
q2,p,1

and a (q1,l)
q1,p,1 exist and coincide. This means that the left VA 

associated with C
(q1,l)
2q2,x and C

(q1,l)
2q1,x

 also coincide. This result 

proves that using a rectangular arrangement, C
(q1,l)
2q2,x, of the 

2q
2
th order circular cumulants of the data allows to achieve 

the same performance, for multiple sources scenarios, in 

terms of potential resolution and robustness to modelling 

errors, as using a square arrangement, C
(q1,l)
2q1,x

, of circular 

cumulants of the data with an order 2q
1
higher than 2q

2
. 

However, for given performance, the rectangular 

arrangement C
(q1,l)
2q2,x  generates both a complexity reduction 

and a lower variance in the statistics estimate than the 

square arrangement C
(q1,l)
2q1,x

, hence an overall best global 

performance. This result, which will be illustrated in section 

5.5 for (q1, q2, l) = (3, 2, 1) and (3, 2, 2), proves that for a 

given statistics order 2q,  the parameter v > q of the 

rectangular arrangement C
(v,l)
2q,x indicates the statistics order, 

2v > 2q, of the square arrangement, C
(v,l)
2v,x, whose 

performance, in terms of potential resolution and robustness 

to modelling errors, can be achieved. This result proves in 

particular the increasing performance with v of 2q-

MUSIC(v, l) as long as q < v ≤ 2q − 1 to be able to process 

multiple sources from an arbitrary array of sensors.  
  
5.3. Identifiability of 2q-MUSIC algorithms 

Denoting by r
(v,l)
2q,x the maximal rank of C

(v,l)
2q,x in the 

absence of noise, it is straightforward to show that the 

maximal number of sources which may be processed by 2q-

MUSIC(v, l) is equal to r
(v,l)
2q,x – 1. Denoting by N

(v,l)
2q,1 and 

N
(v,l)
2q,2  the number of different VS of the left and right 2qth 
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order VA associated with C
(v,l)
2q,x respectively, it is obvious 

from (6) that r
(v,l)
2q,x= Min(N(v,l)

2q,1, N(v,l)
2q,2). For given values of 

(q, l), r
(v,l)
2q,x is then maximized for v = q, i.e., by the square 

arrangement C
(q,l)
2q,x for which r

(q,l)
2q,x = N

(q,l)
2q,1  = N

(q,l)
2q,2, denoted 

by N
l

2q in [4]. Consequently, for given values of q and l, as 

the performance of 2q-MUSIC(v, l) for multiple sources 

increases with v, as shown in section 5.2, in practice v

should be chosen such that q ≤ v ≤ 2q to optimize the 

performance for a given number of sources (greater than 

one) to be processed. This means that C
(v,l)
2q,x must be either 

square or tall and in this case, r
(v,l)
2q,x = N

(v,l)
2q,2. As N

(v,l)
2q,2

decreases with v while the performance improves, there is a 

trade off between the number of sources to be processed and 

the performance for multiple sources and a compromise has 

to be found in practice. The possibility to adjust the 

compromise between the number of sources to be processed 

by 2q-MUSIC(v, l) and its performance for multiple sources 

corresponds to one of the main interests of rectangular 

arrangements with respect to square ones.   

5.4. Optimal arrangement index l

Finally, for given values of q and v ≥ q, and from an 

asymptotical (as K → �) performance point of view, the 

index l is of no importance for the left VA associated with 

C
(v,l)
2q,x as shown in [4]. Thus, as K becomes large, the optimal 

index l is the one which maximizes the number of sources to 

be processed, i.e. N
(v,l)
2q,2. Using the results of [4], we deduce 

that lopt = v/2 if v is even and lopt = (v − 1)/2 if v is odd. 

5.5. Computer simulations 

The results of this paper are illustrated in this section by 

computer simulations. Two performance criteria presented 

in [3] are considered for each source. The first one is the 

probability of non-aberrant results, i.e., the probability that 

the estimated left hand side of (5) is lower than a threshold 

η. The second one is the averaged root mean square error 

(RMSE), computed from the non-aberrant results. We 

assume that 2 synchronized statistically independent QPSK 

sources, sampled at the symbol rate, are received by a 

Uniform Circular Array (UCA) of N = 3 omnidirectional 

sensors with a radius r such that r = 0.3 λ. The 2 QPSK 

sources have the same input SNR equal to 10 dB and a 

direction of arrival equal to θ1 = 90° and θ2 respectively. 

Under these assumptions, Figure 1 shows the variations, as a 

function of the number of snapshots K, of the RMSE for the 

source 1, RMSE1, (we obtain similar results for the source 

2), estimated from M = 500 realizations, at the output of  2-

MUSIC(1, 1), 4-MUSIC(2, 1), 4-MUSIC(2, 2), 4-MUSIC(3, 

1), 4-MUSIC(3, 2), 6-MUSIC(3, 1) and 6-MUSIC(3, 2). For 

these figures, θ2 = 105° and the steering vectors ap (1 ≤ p ≤
2) are corrupted by a zero-mean circular Gaussian modelling 

error vector ep, such that E[ep es
H

] = σ2 δps IN where σ = 

0.03. Note that beyond K = 100 snapshots, the probability of 

non-aberrant results with η = 0.1 is equal to 1 for all the 

methods. Note, above a few hundred of snapshots, the better 

performance of the rectangular 4-MUSIC algorithms, 4-

MUSIC(3, 1) and 4-MUSIC(3, 2), with respect to the square 

ones, 4-MUSIC(2, 1) and 4-MUSIC(2, 2). Note also in this 

case the almost same performance of rectangular 4-MUSIC 

algorithms with the square 6-MUSIC algorithms. To 

complete the previous results, we consider again the 

previous scenario with modelling errors but with now an 

infinite number of snapshots K and an arbitrary value of ∆θ. 

Under these assumptions, Figure 2 shows the RMSE1 as a 

function of ∆θ at the output of the previous methods. We 

note that rectangular 4-MUSIC(3, 1) and 4-MUSIC(3, 2) 

outperform square 4-MUSIC(2, 1) and 4-MUSIC(2, 2) 

especially for close sources and allow to obtain the 

performance of square 6-MUSIC(3, 1) and 6-MUSIC(3, 2) 

using 4
th

 order statistics only. 

Figure 1 – RMSE  of the source 1 (°) as a function of K, P = 2,   N 
= 3, UCA, SNR = 10 dB, ∆θ = 15°, �=0.03.     

Figure 2 – RMSE  of the source 1 (°) as a function of ∆θ°, P = 2, 

N = 3, UCA, SNR = 10 dB, K = �, �=0.03.       

6. CONCLUSION 

In this paper, rectangular arrangements of the HO data 

statistics have been considered for direction finding with the 

proposed rectangular 2q-MUSIC algorithms. It has been 

shown that these rectangular arrangements allow to optimize 

the compromise between performance and maximal number 

of sources to be processed. Besides, they also allow a 

complexity reduction for a given level of performance. 

These results, completely new, should allow the 

development of new methods for HO array processing.
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