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ABSTRACT

We propose providing additional utterance-level features as inputs
to a deep neural network (DNN) to facilitate speaker, channel and
background normalization. Modifications of the basic algorithm are
developed which result in significant reductions in word error rates
(WERs). The algorithms are shown to combine well with speaker
adaptation by backpropagation, resulting in a 9% relative WER re-
duction. We address implementation of the algorithm for a streaming
task.

Index Terms— Deep neural networks, large vocabulary speech
recognition, Voice Search, i-vectors, speaker adaptation.

1. INTRODUCTION

Deep neural networks have come to prominence as acoustic models
in recent years, surpassing the performance of the previous domi-
nant paradigm, Gaussian Mixture Models (GMMs). One of the most
powerful techniques for improving the accuracy of GMM speech
models has been speaker adaptation wherein a speaker independent
model is adapted on a small amount of data from a single speaker,
with the resulting speaker-specific model performing better on test
data from that speaker. Several studies [1, 2, 3] have shown that
speaker adaptation is less effective with DNNs than with GMM
acoustic models, partly because of the greater invariance of DNNs
to speaker variations and their higher baseline accuracy.
Nevertheless, these studies do show that deep networks can be
made more invariant to speaker variability. One of the problems with
speaker adaptation is that it is hard to adapt a large number of param-
eters with only a small amount of data. Care must be taken to change
the parameters sufficiently to have an effect without overfitting on
the new data. Further, speaker adaptation results in a new model, or
part-model, for each speaker which, in a cloud-based speech recog-
nizer adds significant complexity and storage.
1.1. Deep networks

Recent results by many groups [4] have shown significant accuracy
improvements over GMMs by using DNNs either to generate the
GMM features or to directly estimate the acoustic model scores.
Neural networks consist of many simple units which each compute
a weighted sum of the activations of other units, and output an ac-
tivation which is a nonlinear function of that sum. Typically these
units are arranged in layers which receive input from the units in the
previous layer, with the first layer computing a weighted sum of ex-
ternally provided features, such as the filterbank energies of frames
of speech. These networks can be trained to approximate a desired
output function by the backpropagation of the error in the output
compared to a target value provided for each training input example.
We have previously applied hybrid DNNs for acoustic modelling in
Google’s VoiceSearch [5, 6] and YouTube [7] applications.
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1.2. Speaker adaptation (of DNNs)

The classic techniques for speaker adaptation of Gaussian Mixture
Models are (Constrained) Maximum Likelihood Linear Regression
(CMLLR) [8, 9]) and Maximum A Posteriori modelling [10]. In the
former, a linear transformation, computed to maximize the likeli-
hood of the adaptation data, is applied to the features. This technique
has been applied to the features input to a neural network, but has the
limitation of requiring the transform to be computed with a GMM
which also limits the dimensionality and types of features which can
be used. We have found that the gains from using high dimensional,
stacked mel scale log filterbank energies over using conventional
low-dimensional speech features outweigh the gains from being able
to do CMLLR adaptation. Bacchiani [11] has shown that GMMs can
be speaker-adaptated using utterance ¢-vectors (Section 2).

Abrash er al. [2] showed that neural networks can be adapted
by training an input transform or adapting the whole network with
backpropagation, and Liao [3] has recently shown that these tech-
niques can be applied to DNNs with millions of parameters, although
the gains are smaller on larger networks which are inherently more
speaker-independent than smaller networks.

Strom [12] showed that a neural network system trained with
speaker identities could be used at inference time without knowing
the speaker’s identity, inferring a speaker space vector and reduc-
ing the WER by 2.5% relative. Abdel-Hamid and Jiang [13, 14] re-
cently proposed providing speaker adaptation in a DNN by learning
a similar speaker code which is used to compute speaker-normalized
features. In experiments on the TIMIT dataset, they used backprop-
agation to learn a separate code for each speaker. This speaker code
was then used as an input to the network for utterances by the same
speaker. These experiments showed 5% relative phone error rate re-
ductions with DNNs.

Seltzer et al. [15] have shown that augmenting the inputs of a
neural network with an estimate of background noise level can im-
prove the robustness of such a network to background noise. This
“noise-aware” training gave a 4% relative improvement compared to
a DNN baseline using the dropout technique.

While this paper was under review, Saon et al. published a
study [16] in which they augment DNN inputs with speaker i-vector
features, whereas we use utterance i-vectors in a similar manner.
They demonstrate a 10% relative reduction in WER on the 300 hour
Switchboard task.

2. I-VECTORS

In the speaker recognition community utterances are typically rep-
resented by a supervector, whose components are the Maximum A
Posteriori (MAP) adaptation coefficients of a large Gaussian Mixture
Model (GMM) known as the Universal Background Model (UBM).



A number of factors such as the speaker identity and so-called
session factors can contribute to the variability in the parameters [N
and F'. Session factors include undesired variation associated with
the utterance length, phonetic dependency and environmental con-
ditions. In the last few years Factor Analysis (FA) has proved to
be successful in modelling these components of variability as low
dimensional [atent variables (i.e. manifolds).

Several alternative FA methods have been used for speaker
recognition, namely Joint Factor Analysis (JFA) [17], Total Variabil-
ity (TV) [18] and more recently, Probabilistic Linear Discriminant
Analysis (PLDA) [19]. Unlike JFA, where the undesired session
variability and the useful speaker variability are explicitly modelled
as two non-overlapping manifolds, the TV model has shown superior
performance by modelling all sources of variability in the supervec-
tor as a single manifold. A point in this space of latent variables is
referred as an “identity vector”, or ¢-vector. The PLDA model can
be seen as a combination of the previous two techniques, focused on
extracting the speaker variability from the utterance i-vector.

Since they provide a compact representation of speaker and ses-
sion factors that we wish a speech recognition system to be invariant
to, i-vectors and other FA-based factors have been used in the past
for rapid speaker adaptation of speech recognition systems. How-
ever, most of these contributions were based on classical HMM-
based acoustic models. The Eigenvoices model [20] uses short-term
HMM-derived speaker factors (i.e. eigenvoices) to bring a general
speech recognition model closer to a particular speaker, and Bacchi-
ani [11] used i-vectors for a better modelling of session variability,
demonstrating an 11% WER reduction..

2.1. Computing i-vectors

Utterance supervectors are typically represented by the accumulated
and centered zero- and first-order Baum-Welch statistics, N and I
respectively. N and F’ statistics are computed from a UBM, denoted
by A. For UBM mixture m € 1,...,C, with mean, i, the corre-
sponding zero- and centered first-order statistics are aggregated over
all frames in the database:

Ny = > P(mlos, V), (1)
t

Fn
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t

where P(mlo., \) is the Gaussian occupation probability for the
mixture m given the spectral feature observation o; € R at time
t. The TV model can be seen as a classical FA generative model
[21], with observed variables given by the vector of stacked statis-
tics F' = {F1, F», ..., Fn}. The TV model defines a set of hidden
variables z € R : P(x) = N(0,1) and a Gaussian distribution
P(z|F) that represents the utterance. In order to formulate P(x|F),
the model imposes a Gaussian distribution over P(F'|z), which re-
lates observed and hidden variables in terms of a the rectangular low

rank matrix T € REP*L:
P(F |z) = N(NTz,%), 3)
being ¥ € REPXCP 3 diagonal covariance matrix in the space of

F. Here, N denotes a diagonal matrix of size C D x C'D formed by
C diagonal blocks of size D x D where the m-th component block
is given the matrix Ny I(px D)-

The utterance ¢-vector is defined as the value of = that maxi-
mizes P(z|F) -the mean value-. For the imposed values of P(x)
and P(F'|z) the i-vector is formulated as:

z=(I+T'S'NT)"'T*'S'F, )
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Context Units per | Output

Size I TR Layers Jayer . Params
Small 10| 5 4 480 1000 1.5M
Medium | 10 | 5 6 512 2000 2.
Large 16 | 5 6 2176 14247 70M

Table 1: Parameters for the fully-connected sigmoid neural net-
works with softmax outputs.

The TV model is thus a data driven model with parameters
{\,T,%}. In [18] the authors provide a more detailed explanation
of deriving these parameters, using the EM algorithm.

3. ADAPTING DNNS WITH /-VECTORS

Here we propose the idea that ¢-vectors can be used as input features
for neural networks, resulting in improved recognition. ¢-vectors
encode precisely those effects to which we want our ASR system
to be invariant: speaker, channel and background noise. While the
targets to which we normally train are independent of these factors,
providing the network with a characterisation of them at the input
should enable it to normalise the signal with respect to them and
thus better able to make its outputs invariant to them.

Consequently, we propose augmenting the traditional acoustic
input features with the utterance i-vector. A network which takes
a context window of ¢ frames of d dimensional acoustic features is
augmented with v i-vector dimensions resulting in a cd + v dimen-
sional input, as shown in Figure 1.

CD State posterior outputs

Hidden layers Outputs

Inputs

Stacked acoustic features i-vector
Fig. 1: Diagram of a 2-hidden layer neural network with inputs aug-
mented with ¢-vectors.

As with traditional cross-entropy training, frames from the train-
ing data are randomly selected and stacked with the appropriate con-
text window but all frames from a given utterance are augmented
with the same v dimensional utterance ¢-vector.

3.1. Baseline Experiments

In our first experiments we trained three different sizes of network,
with and without utterance ¢-vectors. The network configurations
were chosen to suit both “cloud” speech recognition on a conven-
tional server as well as two sizes of “embedded” speech recog-
nizers designed to run on mobile phones of different processing
power. Each network is fully connected with logistic sigmoid hid-
den layers and softmax outputs, receiving stacked 25ms frames of
40-dimensional Mel filterbank energy features as input. The number
of parameters in the baseline networks are shown in Table 1, with
the augmented networks having slightly more parameters in the ini-
tial layer because of the increased input dimension. All the networks



are trained from random initialization with exponentially decaying
learning rates.

The networks are trained on a corpus of 3 million utterances
(about 1,750 hours) of US English Google voice search and dictation
traffic, anonymized and hand-transcribed. This data is endpointed
and aligned using a high accuracy server-sized neural network with
14247 context dependent (CD) states. For the smaller networks these
state symbols are mapped through equivalence classes down to the
smaller state inventories. During training, CD state frame accuracies
are evaluated on the training data and on a held out development set
of 200,000 frames. Word Error Rates (WERs) are measured on a test
set of 23,000 hand-transcribed utterances sampled from live traffic.
Training is by stochastic gradient descent with a minibatch size of
200 frames on a Graphics Processing Unit.

The parameters of the TV model, including the UBM, were also
trained on this corpus. The UBM was trained with 1024 mixtures
computed from 13 perceptual linear prediction coefficients with
delta and delta-delta features appended. The matrix 3> was built by
stacking the diagonal covariance matrices and never updated, while
the matrix 7" was initialized using PCA and updated with 10 EM
iterations for 300 latent variables.
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Fig. 2: Frame accuracies against billions of training samples on
training and held-out dev sets during training for the larger network,
with and without i-vector inputs.

Model size Baseline i-vector
WER | Frame acc. | WER | Frame acc.
Small 17.8 55.4 18.2 58.5
Medium 15.0 55.0 15.5 59.1
Large 11.0 57.1 12.3 59.1

Table 2: WERs and development set frame accuracy for baseline
and with inputs augmented by 300 ¢-vector dimensions.

Figure 2 shows the progress of development set and training set
frame accuracies during training of the small networks, and Table
2 shows the corresponding WERs. Early in training the i-vectors
give a significant (3%) increase in development set frame accuracy
and a larger (6%) increase in training set frame accuracy. As train-
ing progresses, the margin between training and dev-set accuracy
diminishes, but the margin for the i-vector-augmented network re-
mains much larger than for the baseline (2% vs 0.8%). From these
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graphs we infer that the network is able to use the i-vector to pre-
dict the frame classes, but is overfitting to the i-vector and is unable
to use this information during decoding, resulting in higher WERs.
Alternatively, it is possible that many voice search utterances are
very short -only a few hundreds of voiced frames- and the 300-
dimensional ¢-vectors estimate is not reliable. Both conjectures will
explored in the next section.

4. REGULARIZATION

To avoid the overfitting we investigated two solutions:
1. Reduce the information content of the ¢-vectors.
2. Regularize the network parameters.

The first solution attempts to reduce the overfitting by limiting
the amount of information presented to the network. To this end
we truncate the ¢-vectors to a smaller dimension before augment-
ing the input vector. Arbitrarily the first £ elements of the vec-
tor are preserved. Table 3 shows that reducing the dimensionality
of the i-vector results in a lower WER, with the greatest gains be-
ing made with the smaller networks. Having validated the use of

. i-vector dimensions (k)
Model size 0] 20] 50 100 ] 200 ] 300
Small 178 | 17.0 | 172 | 17.4 | 179 | 182
Medium 150 | 14.5 | 145 | 145 | 152 | 155
Large 110 | 109 | 109 | 112 | 11.8 | 123

Table 3: WERs when augmenting the network inputs with truncated
i-vector inputs.

lower dimensional i-vectors, we trained low dimensional TV matri-
cess with 20 and 50 dimensions and repeated the above experiment
with these i-vectors. We found that training a medium network with
a 20-dimensional ¢-vector led to a WER of 14.4%, outperforming
the 300-dimensional ¢-vector truncated to 20 dimensions, but a 50-
dimensional i-vector performing worse, at 14.9% WER.

The second solution begins with a network trained without any
i-vector information. This network’s input layer’s weight matrix is
augmented with weights, initially set to zero, from 300 additional
inputs. The network is then trained further with i-vector-augmented
inputs, but with ¢, regularization (weight decay) back to the original
weights, i.e. adding a term to the loss function proportional to the
sum-squared difference between the network’s weights and those of
the network before i-vector augmentation. Experimentation found
good results with a weight decay parameter of 107 to 107°. The
small, medium and large networks were augmented, before full con-
vergence, at 12, 10 and 4 billion frames respectively. Table 4 shows

.. .. Regularization
Training | Original 10-7 [ 10-°
Small 17.8 | 17.2 17.3
Medium 150 | 14.5 14.6
Large 11.0 | 10.6 10.8

Table 4: WERs when training an i-vector-augmented network while
regularizing back to the original weights.

the results of this regularization. We see that the regularized net-
works have a lower WER than the original, unaugmented features,
and that the large regularized network outperforms the correspond-
ing network trained with truncated i-vectors.



5. COMBINING WITH ADAPTATION

In this section we explore the interaction between using utterance
i-vectors for invariance and the use of adaptation to provide speaker
invariance. Liao [3] describes how training on an adaptation set for a
particular speaker using backpropagation with ¢ regularization back
to the original, speaker-independent, model can reduce WERS on test
data from the same speaker.

Here we compare our technique with this approach and show
that the two can be used in combination to achieve even lower er-
ror rates. These experiments are conducted with the best “Medium”
models only. We use the same personalization training and test sets
used by Liao. These have 10 minutes of adaptation data for each of
80 speakers, and a total of 10,000 utterances (72,000 words) from the
same 80 speakers in the test set. We report average word error rates
across the entire test set. We use the “enrollment” protocol, i.e. the
training data is manually transcribed and force-aligned with a large
DNN model. The baseline model is adapted to each speaker’s data
with multiple passes. We continue to use the same, exponentially
decaying learning rate, and an ¢ regularization weight of 0.01. We
find the best performance after 1 million frames of adaptation.

The results are shown in Table 5. As can be seen, the adapted
baseline model achieves a lower word error rate than with the un-
adapted ¢-vector-augmented models, but when the latter are also
adapted, their WER is also reduced, bringing a total of 9% rela-
tive WER reduction from the combined technique for the truncated
1-vectors.

Model Unadapted | Adapted
Baseline model 15.3 14.4
300 dim Regularized (10~") model 14.9 14.3
20-dim ¢-vector model 14.7 14.0

Table 5: WERs for medium DNNs on the personalization test set
representing 80 speakers, using speaker independent models and
models adapted on 10 minutes of data per speaker (with 1 million
frames of adaptation).

6. STREAMING IMPLEMENTATION

One limitation of this approach is that the ¢-vector representation we
are using is computed on an entire utterance, and thus can only be
computed when all the data for an utterance is available. Our prin-
cipal application is real-time transcription of utterances from mo-
bile devices with minimum latency, which involves processing ut-
terances as they are being spoken and streaming results back to the
user even before the utterance is complete. This approach produces
a very responsive speech interaction on the device, but means that
whole-utterance approaches cannot be used in practice, although fast
rescoring with the augmented models could be applied without in-
troducing too much overall latency.

To address this incompatibility with our application we inves-
tigated using speaker-averaged i-vectors in place of utterance i-
vectors. Here we compute an averaged speaker ¢-vector on the 10-
minute adaptation set and used this for decoding the speaker’s per-
sonalization data using the models trained above on per-utterance
i-vectors. As can be seen in Table 6, the mismatched average -
vectors are not useful in decoding on a model trained with utterance
i-vectors. In addition to matched training with speaker i-vectors,
there are a number of alternative ways of training with ivectors for a
streaming application which we will investigate in the future.
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Model Utterance [ Speaker
Baseline model 15.3

300 dim Regularized (10~7) model 149 15.3
20-dim ¢-vector model 14.7 15.5

Table 6: WERSs for medium DNNs on the 80 speaker personalization
test set using speaker and utterance ¢-vectors in decoding.

e On-line computation of the i-vectors: We can compute the
i-vectors based on the data so far, or use the d-Vector pro-
posed by Variani et al. [22] computed, like our posteriors,
based on a sliding window of frames.

o Use of the i-vector from the speaker’s previous utterance
Within a session, we expect variations in background noise,
channel and speaker to be small, so the i-vector of the previ-
ous utterance may still be sufficient to provide invariance to
these factors.

7. COMPARISON TO SIMILAR WORK

As noted earlier, Saon et al. published a similar work [16] while
this paper was under review. They also augment the DNN input,
but use the speaker ¢-vector for all utterances by the speaker, both
in training and testing. Their DNNs are trained on LDA-projected
PLP features from a narrow window which allow the use of con-
ventional speaker adaptation. They show better performance with
higher dimensional speaker ¢-vectors and obtain 10% relative WER
reduction over speaker-independent features — their greater gains
perhaps being due to the poorer baseline features used. They also
demonstrated that ¢-vector augmentation combined well with a con-
ventional speaker adaptation technique (CMLLR). They found that
the ¢-vector dimension had to be at least 100, and in addition found
that this technique was was beneficial in combination with sequence-
discriminative training.

8. CONCLUSIONS

We have shown that using the utterance i-vectors as input features
provides the neural networks with valuable information that, with
the regularization we propose, bring about roughly a 4% relative re-
duction in word error rate for all model sizes. These techniques can
be applied on any utterance, without requiring any speaker informa-
tion or speaker adaptation or model storage. The technique has been
shown to combine well with model adaptation, delivering an overall
9% WER reduction for models that are small enough to be run in
real-time in a smart-phone, which are ideal candidates for speaker-
adapted models.

These improvements are directly applicable to non-realtime ap-
plications, but are not well suited to a streaming scenario. We have
proposed a variety of methods to address this in future work, but us-
ing the speaker i-vector in place of the utterance ¢-vector at test time
did not help. It will be instructive to further investigate the relative
benefit of using speaker i-vectors compared to utterance %-vectors
which are far more noisy (particularly on short utterances) but offer
independence to variations other than speaker identity.
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