
DSP SEE-THROUGH: GOING BEYOND TALK-THROUGH

Adrian Rothenbuhler† Cameron H.G. Wright‡ Thad B. Welch? Michael G. Morrow�

†Hewlett-Packard, Boise, ID; Adrian.Rothenbuhler@HP.com
‡Dept. of Elec. and Comp. Engineering, University of Wyoming, WY; c.h.g.wright@ieee.org

?Dept. of Elec. and Comp. Engineering, Boise State University, ID; t.b.welch@ieee.org
�Dept. of Elec. and Comp. Engineering, University of Wisconsin - Madison, WI; morrow@ieee.org

ABSTRACT

Engineering educators have found that students making the
transition to real-time digital signal processing (DSP) from
the more comfortable world of off-line processing using
MATLAB must establish confidence in the hardware and
software platform before significant learning can begin. In
the audio realm, a talk-through project accomplishes this. For
moving on to a more complicated signal such as video, the
authors propose the use of a see-through project. A descrip-
tion of a see-through project on a high-performance real-time
DSP platform, and how this can lead to better follow-on
learning, is provided.

Index Terms— digital signal processing, video process-
ing, engineering education

1. INTRODUCTION

Competence in digital signal processing (DSP) topics is now
expected by most employers of new electrical and com-
puter engineering (ECE) graduates. While the subject may
be taught various ways, it has been found that a solid un-
derstanding of many fundamental DSP topics is more fully
realized by students when they attempt to implement various
DSP algorithms in real-time (typically in C), as compared to
non-real-time (i.e., off-line) implementations with tools such
as MATLAB or LabVIEW [1]. Interactive learning, exer-
cises, and demonstrations to students using off-line methods
are very useful for helping them to build an initial mental
model [2–6]. But making the transition to real-time DSP
implementations cements a more complete understanding.

The authors of this paper have, over the last decade or
so, reported on proven DSP teaching methodologies, hard-
ware and software solutions, and various DSP tools that have
helped motivate students and faculty to implement real-time
DSP-based systems to improve education in signal processing
and related topics [7–18]. This support to educators includes
a textbook and a web site that specifically helps both profes-
sors and students (and working engineers) master real-time
DSP concepts [19, 20].

There is an initial stumbling block that can greatly impede
student progress. We have found that when students are first
making the transition from the “comfortable” world of off-
line signal processing (typically using MATLAB) to real-time
DSP, they must quickly establish confidence in the hardware
and software platform before significant learning can begin.
Without such confidence, any errors or incorrect results from
their DSP efforts are quickly blamed on the platform. The
students will almost never investigate further to uncover other
possible reasons for the flawed outcome, mainly because they
are not yet comfortable with the new platform. To establish
such confidence, a “stripped down” first exercise is used that
tests the ability of the platform to correctly acquire data sam-
ples as input and provide unmodified samples as output. No
signal processing algorithm is executed by the processor to
modify the samples.

Correct output thus confirms proper initialization and con-
figuration of all the hardware, a correct definition of the in-
terrupt vector table, correct execution of the appropriate in-
terrupt service routines (ISRs), proper operation of the ADC
and DAC aspects of the associated codec, correct execution of
the compile-link-load software development chain, and even
correct connection of all the necessary cables and wires. A
problem with any of these would cause the first exercise to
fail, at which point the instructor can guide the student toward
resolution of the problem. Once the first exercise is success-
fully completed, students are much more likely to take a more
critical and investigative approach to any errors they may en-
counter in more sophisticated exercises. At this point, real
learning can proceed. While such a “do nothing” program
may seem to be a trivial exercise, we have been convinced by
our own and our colleagues’ experiences that skipping such a
step impedes learning.

When dealing with signals in the audio range, this first
exercise has been called talk-through. An analog audio sig-
nal is acquired by codec’s ADC channels at a certain sam-
ple frequency, and (hopefully) the same audio signal is output
from the codec’s DAC channels (within the limits of reali-
ties such as quantization error, of course). Minimal modifica-
tions to the talk-through exercise can introduce concepts such
as aliasing, quantization, left+right versus left–right channel

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2247

combinations, and so forth. While the audio signal is often
not speech, and is more often music, the name talk-through
has stuck.

At some point, the professor may want to introduce the
students to a more complicated signal, perhaps at a higher fre-
quency and wider bandwidth. One such signal that is readily
available using low-cost equipment and one that also seems
to excite students even more than audio is a video signal.
For moving up to video signals, the authors propose the use
of a logical extrapolation of talk-through that we call a see-
through project.

2. SEE-THROUGH FOR VIDEO SIGNALS

Our current choice of high-performance real-time DSP hard-
ware for classroom use is the relatively new Texas Instru-
ments OMAP-L138 Low Cost Development Kit (LCDK)
[21, 22]. One of the many advantages of this platform is the
plethora of I/O choices. Most germane to this discussion is
the video input and video output shown in Fig. 1.

The video input is intended for a standard definition tele-
vision quality composite video signal such as NTSC, PAL or
SECAM. NTSC, for example, is an analog baseband signal
with a nominal 6 MHz bandwidth [23, 24]. The video is in-
terlaced at approximately 60 fields per second and 30 frames
per second.1 Each field is 262.5 scan lines; two fields per
frame results in 525 scan lines per frame, of which only 483
lines can be visible due to factors such as synchronizations
and vertical blanking/retrace. NTSC has subcarriers defined
for luma, chroma, and audio. Obviously, this video signal is a
significant step up in complexity from a two-channel, 20 kHz
bandwidth audio signal sampled at 48 kHz, and the pitfalls
for the student are that much greater.

On the LCDK, the analog video input is digitized, de-
coded, and formatted by the TVP5147M1 digital video de-
coder. This chip includes an ADC stage (at up to 30 Msps)
and the necessary circuitry for extracting and sending as
output the luma and chroma information as separate 10-bit
data streams (via intermediate steps of YUV → YCbCr →
luma (Y) and chroma (C) format). The chroma data stream
provides 5 bits/sample for Cb and Cr, and is interleaved
as [CbCrCbCr · · ·]; the luma data stream uses the full 10
bits/sample for Y. No audio demodulation is performed by
this chip. While the LCDK implementation of this decoder
chip only takes advantage of a small subset of the available
modes, the user must still fully configure the chip via an I2C
bus to set the appropriate mode of operation.

The analog video output from the LCDK is produced by
the THS8135 video DAC; this chip accepts digital input for-
mats as either YCbCr or RGB and supplies a standard VGA
(analog RGB) signal as output. On the LCDK, this output
connects to a DB-15 connector.

1More precisely, NTSC is 59.94 fields/sec and 29.97 frames/sec.

On the surface, a see-through exercise seems straightfor-
ward. Simply connect an analog video camera to the LCDK’s
video input, and a VGA-compatible monitor to the DB-15
VGA output, write a bare-bones “do nothing” real-time DSP
program to bring in the input and send out the output. . . but in
reality it’s not nearly that easy. The initialization must include
extensive configuration code to set the proper I/O, interrupt
enable, interrupt vector table, initial setup of the TVP5147M1
digital video decoder, DMA channels, and so forth, which is
not trivial but is only done at startup. However, the actual
real-time frame to frame operation isn’t straightforward ei-
ther. While the TVP5147M1 digital video decoder outputs
YCbCr, and one of the input modes of the THS8135 video
DAC accepts YCbCr, the LCDK board is constructed such
that the configuration pins on the THS8135 chip are hard-
wired to set the mode to RGB input only. Thus at a mini-
mum, a conversion from YCbCr to RGB must be part of the
real-time see-through code.

Conversion from YCbCr to RGB is a simple linear rela-
tionship. Defined most basically, independent of the number
of bits per sample, the conversion is R

G
B

 =

 1.0 0.0 1.402
1.0 −0.3441 −0.7141
1.0 1.772 0.00015

 Y
Cb

Cr


where it is assumed that the values are normalized such that
the range of the RGB values and the luma Y values is [0, 1],
the range of the chroma Cb and Cr values is [−0.5,+0.5], and
any head-room or toe-room has been removed by rescaling to
full-range as needed. Note that there are minor variations on
the conversion coefficients depending upon what version ITU
standard is appropriate. The normalized values shown here
are correct for ITU-R BT.601, which are the same ones used
for the JPEG and MPEG standards.

Since some processing had to be performed inside the
see-through ISR anyway, we considered it an opportunity
to explore certain aspects of the OpenCV library and the
TMS320C6748 SYS/BIOS Software Development Kit (SDK)
provided by Texas Instruments (TI); see [25]. In particular,
we used basic parts of the “Facedetect” and “VPIF Loopback”
example projects from the SDK.

3. IMPLEMENTATION DEMO

This SDK take advantages of the full OpenCV library.
OpenCV is an open source computer vision library started
by Intel in 1999 and transferred to the non-profit OpenCV.org
group in 2012 [26]. While see-through, by definition, should
perform minimal processing, we wished to retain the ability
to call OpenCV routines for follow-on projects that would be
based on the see-through project.

The CCS example projects as supplied with the SDK re-
quired the full 2 GB SDK, but stripping this down to only
the necessary device drivers and library files dropped this to

2248

Fig. 1. Block diagram of the LCDK from Texas Instruments. Note the video input and output capability.

just under 20 MB (OpenCV itself, once precompiled by the
user, is 18 MB of that total). The original example projects
also used the SYS/BIOS real-time operating system (RTOS)
from TI, which we have found is not a good choice for first
exposure to students. The SYS/BIOS RTOS adds consider-
able complexity, overhead, and executable file size to sup-
port functionality we don’t want or need for projects that are
intended for real-time DSP students. Therefore, we further
stripped down and borrowed from the SDK example projects,
removing the dependence on SYS/BIOS, and created a real-
time project in the manner recommended in [19].

In the project, main.c initializes the hardware and the
camera, then calls Process Video in an endless loop. The
Process Video function waits for a frame to be captured
before proceeding. At the end of each incoming frame from
the camera, an interrupt is generated.

There are two ISRs, VPIFIsr and LCDIsr. The
VPIFIsr ISR brings in the video data and stores it using
separate frame buffers for the luma and chroma; a dou-
ble buffer (i.e., ping-pong) method is used for each. At
this point, the Process Video function resumes and
performs the YCbCr → RGB conversion via a call to the
cbcr422sp to rgb565 c TI utility function. Note this
conversion does not occur inside an ISR. The LCDIsr ISR
continuously points the appropriate frame buffer (now con-
taining RGB values) to the output raster buffer for DMA
transfer and display on the monitor; this ISR also has a place-
holder where some real-time image processing algorithm can

be executed. Since most standard image processing algo-
rithms assume RGB values as the starting point (not YCbCr),
this is the best location for such a placeholder. As a simple
test, the cvRectangle OpenCV function is called here to
place a small blue rectangle on the screen over the video data.

It should be noted that, for improved speed, the frame
buffers for this project are created in the DDR RAM of the
LCDK’s L1 cache rather than in the regular external DDR
RAM memory space.

The real-time see-through project provided an excellent
demonstration of bringing in a video signal from a camera
and sending it out for display on a monitor, as shown in Fig. 2.
Note the blue rectangle displayed on top of the real-time video
image. This “simple” real-time demo is highly motivating for
students, and provides many opportunities to segue into var-
ious basic concepts. For example, sampling and aliasing can
be discussed in terms of measuring the frame rate of the sys-
tem by imaging a variable-speed rotating disk with a high-
contrast marker on it. As the disk speed is steadily increased,
it appears to start slowing down when the rotational rate ex-
ceeds half the frame rate (i.e., Fs/2) and aliasing occurs. The
disk appears to be stationary when the rotational rate equals
the frame rate (i.e., Fs). This is also a good time to show stu-
dents that, while the fully optimized “Release Build” of the
project can run at the full 29.97 frames/sec rate of NTSC, the
non-optimized “Debug Build” can only run at approximately
6.5 frames/sec.

2249

Fig. 2. A demonstration of the see-through real-time DSP exercise.

4. CONCLUSIONS

Including a bare-bones first project, such as talk-through or
see-through, to build student confidence in the real-time plat-
form is a valuable pedagogical approach. Skipping this step
has been seen to greatly reduce student motivation to pursue
the real cause of incorrect results from a real-time DSP exer-
cise, as students are otherwise quick to “blame” the platform.

When making the change from talk-through to see-
through, a host of additional considerations and complica-
tions must be addressed. Not only is the video signal itself
more complicated, but the configuration and use of the input
and output chips specific to video are more challenging to use
than an audio codec. An additional requirement when using
the LCDK for video see-through is the need for conversion
from YCbCr to RGB.

We have built such a see-through project and successfully
run it at the full frame rate of NTSC video using the LCDK. In
the future, we plan to more completely strip away the reliance
on pieces of the original example projects supplied with the
TMS320C6748 SYS/BIOS Software Development Kit.

Faculty who teach DSP are strongly encouraged to in-
corporate demonstrations and hands-on experience with real-
time hardware for their students, and to include talk-through
and see-through as confidence-building projects for the stu-
dents. We have made various resources widely available to
help in this endeavor [20, 27].

5. REFERENCES

[1] C. H. G. Wright, T. B. Welch, D. M. Etter, and M. G.
Morrow, “Teaching DSP: Bridging the gap from theory
to real-time hardware,” ASEE Comput. Educ. J., pp. 14–
26, July–September 2003.

[2] C. S. Burrus, “Teaching filter design using MATLAB,”
in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, pp. 20–30,
Apr. 1993.

[3] R. F. Kubichek, “Using MATLAB in a speech and sig-
nal processing class,” in Proceedings of the 1994 ASEE
Annual Conference, pp. 1207–1210, June 1994.

[4] R. G. Jacquot, J. C. Hamann, J. W. Pierre, and R. F.
Kubichek, “Teaching digital filter design using sym-
bolic and numeric features of MATLAB,” ASEE Comput.
Educ. J., pp. 8–11, January–March 1997.

[5] J. H. McClellan, C. S. Burrus, A. V. Oppenheim, T. W.
Parks, R. W. Schafer, and S. W. Schuessler, Computer-
Based Exercises for Signal Processing Using MATLAB
5. MATLAB Curriculum Series, Upper Saddle River, NJ
(USA): Prentice Hall, 1998.

[6] J. W. Pierre, R. F. Kubichek, and J. C. Hamann, “Rein-
forcing the understanding of signal processing concepts

2250

using audio exercises,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing, vol. 6, pp. 3577–3580, Mar. 1999.

[7] C. H. G. Wright and T. B. Welch, “Teaching DSP
concepts using MATLAB and the TMS320C31 DSK,”
in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 6,
pp. 3573–3576, Mar. 1999.

[8] M. G. Morrow and T. B. Welch, “winDSK: A windows-
based DSP demonstration and debugging program,”
in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 6,
pp. 3510–3513, June 2000. (invited).

[9] M. G. Morrow, T. B. Welch, C. H. G. Wright, and
G. W. P. York, “Demonstration platform for real-time
beamforming,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Pro-
cessing, vol. 5, pp. 2693–2696, May 2001.

[10] C. H. G. Wright, T. B. Welch, D. M. Etter, and M. G.
Morrow, “Teaching hardware-based DSP: Theory to
practice,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing, vol. 4, pp. 4148–4151, May 2002.

[11] T. B. Welch, R. W. Ives, M. G. Morrow, and C. H. G.
Wright, “Using DSP hardware to teach modem design
and analysis techniques,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Sig-
nal Processing, vol. III, pp. 769–772, Apr. 2003.

[12] T. B. Welch, M. G. Morrow, and C. H. G. Wright, “Us-
ing DSP hardware to control your world,” in Proceed-
ings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. V, pp. 1041–1044,
May 2004. Paper 1146.

[13] T. B. Welch, C. H. G. Wright, and M. G. Morrow,
“Caller ID: An opportunity to teach DSP-based demod-
ulation,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing,
vol. V, pp. 569–572, Mar. 2005. Paper 2887.

[14] T. B. Welch, C. H. G. Wright, and M. G. Morrow,
“Teaching rate conversion using hardware-based DSP,”
in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. III,
pp. 717–720, Apr. 2007.

[15] C. H. G. Wright, M. G. Morrow, M. C. Allie, and T. B.
Welch, “Enhancing engineering education and outreach
using real-time DSP,” in Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing, vol. III, Apr. 2008.

[16] T. B. Welch, C. H. G. Wright, and M. G. Morrow, “Soft-
ware defined radio: inexpensive hardware and software
tools,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing,
pp. 2934–2937, Mar. 2010.

[17] M. G. Morrow, C. H. G. Wright, and T. B. Welch,
“winDSK8: A user interface for the OMAP-L138 DSP
board,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing,
pp. 2884–2887, May 2011.

[18] M. G. Morrow, C. H. G. Wright, and T. B. Welch, “Real-
time DSP for adaptive filters: A teaching opportunity,”
in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, May 2013.

[19] T. B. Welch, C. H. G. Wright, and M. G. Morrow, Real-
Time Digital Signal Processing: From MATLAB to C
with C6x DSPs. Boca Raton, FL (USA): CRC Press,
2nd ed., 2012.

[20] “RT-DSP website.” http://www.rt-dsp.com.

[21] M. G. Morrow, C. H. G. Wright, and T. B. Welch, “An
inexpensive approach for teaching adaptive filters us-
ing real-time DSP on a new hardware platform,” ASEE
Comput. Educ. J., pp. 72–78, October–December 2013.

[22] Texas Instruments, “L138/C6748 Development Kit
(LCDK),” 2013. http://processors.wiki.ti.
com/index.php/LCDK_User_Guide.

[23] K. B. Benson and J. Whitaker, Television Engineering
Handbook. New York: McGraw-Hill, revised ed., 1992.

[24] Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Pro-
cessing and Communications. Prentice-Hall, 2002.

[25] “Texas Instruments SYS/BIOS real-time kernel,” 2013.
http://www.ti.com/tool/sysbios.

[26] “OpenCV website,” 2013. http://opencv.org/.

[27] Educational DSP (eDSP), L.L.C., “DSP resources for TI
DSKs.” http://www.educationaldsp.com/.

2251

