
HANDS-ON REAL-TIME DSP TEACHING USING INEXPENSIVE ARM CORTEX M4
DEVELOPMENT SYSTEMS

Donald S. Reay

School of Engineering and Physical Sciences,
Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

d.s.reay@hw.ac.uk

ABSTRACT

Hands-on, real-time digital signal processing (DSP) program exam-
ples from the textbook Digital Signal Processing and Applications
with the OMAP-L138 eXperimenter [1] have been ported to a num-
ber of different, inexpensive ARM Cortex M4 microcontroller-based
evaluation modules (EVMs). The ARM Cortex M4 is a DSP-
enhanced microcontroller with floating point unit (FPU) that is ca-
pable of running these real-time examples. EVMs using this micro-
controller are an order of magnitude less expensive than more con-
ventional DSP EVMs (including the OMAP-L138 eXperimenter.)
ARM Cortex M4 EVMs including the STMicro STM32F4 Dis-
covery, Texas Instruments Tiva Launchpad, and Freescale FRDM-
K20D50M represent a quantum change in the cost of hardware
suitable for hands-on, real-time DSP teaching. However, these
EVMs do not include audio codecs, necessitating the development
of additional hardware. Prototype audio codec daughter cards for
three different EVMs have been demonstrated successfully.

Index Terms— digital signal processing, engineering education

1. INTRODUCTION

The use of digital signal processor (DSP) evaluation modules
(EVMs) in university teaching laboratories worldwide is well es-
tablished. Numerous textbooks [2, 3, 4], on-line material, and the
efforts of different manufacturers’ university programmes provide
support for this. Conventionally, EVMs featuring specialised DSP
hardware and typically costing over $300 each are used. In many
cases this hardware finds little use outside DSP teaching and, to
some extent, perpetuates a mystique surrounding dedicated DSP
hardware.

The advent of DSP-enhanced microcontrollers in the form of the
ARM Cortex M4 and a number of different EVMs costing approxi-
mately $10 each affords an exciting opportunity to spread hands-on
DSP teaching both to laboratories equipped for more general micro-
controller education and to institutions that have found the cost of
providing dedicated DSP hardware too high. Already, ARM Cortex
M4 EVMs are being adopted for microcontroller education [6].

Examples of inexpensive EVMs include the STMicro STM32F4
Discovery, the Texas Instruments Tiva Launchpad, and the Freescale
Freedom FRDM-K20D50M. However, these EVMs do not feature
hardware audio codecs (although the STM32F4 Discovery features
an audio DAC) to allow for real-time analogue input and output. For
the purposes of porting the hands-on laboratory examples developed
previously for the Texas Instruments C6713 DSK and OMAP-L138
EVMs [2, 1], inexpensive audio codec daughter cards have been de-
veloped.

2. HANDS-ON DSP TEACHING USING ARM CORTEX M4
EVMS

Hands-on examples of digital signal processing algorithms using ac-
tual real-time audio signals in a laboratory are provided. Their aim
is not to teach the architecture or programming model of the ARM
Cortex M4 microcontroller, or the use of the MDK-ARM or CCS de-
velopment environments, beyond what is necessary to carry out the
experiments, but to re-inforce digital signal processing theory taught
in lectures.

The teaching materials [1] comprise a large number of simple
program examples that may act as the starting point for further teach-
ing exercises. Specifically, they are intended to demonstrate funda-
mental DSP concepts including FIR and IIR filters, the FFT, and
LMS adaptive filters.

A basic audio frequency digital signal processing system com-
prises analogue to digital and digital to analogue converters as well
as a processor. In the case of the OMAP-L138 eXperimenter, such
a system was provided on a single EVM board, with 3.5mm jack
sockets enabling connection to oscilloscopes, signal generators, PC
soundcards, loudspeakers, headphones, mp3 players, etc.

Although they have less computational power, each of the afore-
mentioned ARM Cortex M4 EVMs can run the examples developed
originally for the OMAP-L138. Code may be developed for each of
the EVMs using the same development environment (MDK-ARM,
available free of charge in a code-size limited version) or, in the case
of the Tiva Launchpad, using Code Composer Studio. The different
manufacturers’ processors share the same ARM Cortex M4 core, in-
cluding DSP instructions and FPU but differ slightly in terms of the
on-chip peripheral functions provided. The DSP instructions are im-
portant in enabling the microcontrollers to run the real-time example
programs. The FPU is important also because, in the interests of
clarity, the example programs are written using floating point vari-
ables.(The Kinetis K20 processor on the FRDM-K20D50M does not
have a FPU but is able to run several of the example programs.)

Each manufacturer provides slightly different set of library func-
tions to support their device. Hence, the low-level parts of the source
code for each different EVM is slightly different. However this level
of detail is effectively hidden from a student concentrating on the
overall structure of the program examples and on the DSP algorithms
implemented. There are also slight differences in the processor clock
speeds used by each EVM and in the physical connections provided.
Audio codecs are interfaced using I2C and I2S peripherals.

The STMicro STM32F4 Discovery board has a processor clock
speed of 168 MHz, spare I2S and I2C peripherals, and also two on-
board 12 bit DACs and one external stereo audio DAC. The Freescale
FRDM-K20D50M EVM has a processor clock speed of 50 MHz and

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2243

Fig. 1. STMicro STM32F4 Discovery EVM and AIC23-based audio
codec daughter card.

spare I2S and I2C peripherals. The Texas Instruments Tiva Launch-
pad has a processor clock speed of 80 MHz, a spare I2C peripheral,
and I2S emulation is possible using two SSI peripheral interfaces
and a single external inverter. Additionally, the lack of a conven-
tional I2S interface means that the Tiva Launchpad cannot easily
provide the master clock signal required by an audio codec and there-
fore its daughter card must include a XTAL oscillator module. All
three EVMs derive their power from a USB connection to a host PC
running the IDE. Each of the EVMs stores program code in flash
memory and will run that program on power up and reset.

Prototype audio codec daughter cards using a Texas Instru-
ments AIC23 codec have been built and tested for the three different
EVMs. Figure 1 shows an ST32F4 Discovery EVM fitted with an
AIC23-based daughter card. The four jack sockets are for mono
MIC IN, and stereo LINE IN, LINE OUT and HP OUT. This is
directly equivalent to the audio interface on the Texas Instruments
C6713 DSK which also used the AIC23 codec. Figure 2 shows the
Freescale FRDM-K20D50M EVM. Figure 3 shows an AIC23-based
audio daughter card for the Tiva Launchpad. The electrical connec-
tions to each EVM are I2C for codec configuration, I2S for duplex
data communication and a 3V3 power supply. Figure 4 shows a Tiva
Launchpad and daughter card running an example program.

In addition to constructing AIC23-based daughter cards, the
EVMs have been tested successfully connected to an EVM for the
Texas Instruments AIC3106 audio codec used on the OMAP-L138
eXperimenter.

3. REAL-TIME CONSIDERATIONS

The hands-on DSP teaching examples serve as an introduction to the
structure of C programs operating with hard real-time constraints.
In view of the simple nature of each example, it is not necessary to
make use of a real-time operating system. Three different methods
of i/o; polling-, interrupt-, and DMA-based are used. Several of the
simpler examples illustrating sampling and reconstruction of signals,
and many of the FIR and IIR filter examples, use interrupt-driven

Fig. 2. Freescale FRDM-K20D50M EVM.

(one interrupt per sampling instant) i/o. FFT examples use DMA-
based i/o, and several examples are provided in both interrupt-driven
and DMA-based i/o versions.

One way in which the examples differ from those developed for
the OMAP-L138 is that due to the lesser computational power of the
ARM Cortex M4, greater use has been made of optimised functions
provided by the CMSIS DSP library as opposed to clearer, explicit,
but computationally inefficient, programming of algorithms. A num-
ber of different examples are provided that trade off sampling rate,
filter or FFT order, with clarity of source coding. Many of the CM-
SIS DSP functions are designed to process blocks of data and con-
sequently a greater proportion of the example programs provided for
the ARM Cortex M4 use DMA-based i/o.

The following examples illustrate the use of the different i/o
methods on Tiva and STM32F4 EVMs simply to copy samples from
ADC to DAC. In each case, filtering or other algorithms can be in-
serted at the points indicated. These examples are presented in order
to give an idea of the structure of the programs provided.

3.1. Simple Program Example - tiva loop poll.c

Figure 5 shows a listing of example program tiva loop poll.c
which runs on the Texas Instruments Tiva Launchpad. This pro-
gram uses polling-based i/o. Function main() comproses an
endless loop within which sample values are read from the ADC
and then written to the DAC. Functions input sample(),
output sample() and tiva init poll() are defined in the
source file aic23 init.c in order to hide unnecessary low-level
detail from the student. Function tiva init poll() initialises
the AIC23 codec for polling-based i/o. 32-bit variable sample
comprises two 16-bit (left and right channel) samples.

While demonstrating real-time audio input and output with a
minimum of code, polling-based i/o is not computationally efficient.

2244

Fig. 3. AIC23-based boosterpack daughter card for Texas Instru-
ments Tiva Launchpad.

Fig. 4. Texas Instruments Tiva Launchpad and AIC23 boosterpack
running an example program.

3.2. Simple Program Example - stm32f4 loop intr.c

Figure 6 shows a listing of program stm32f4 loop intr.c
which runs on the STMicro STM32F4 Discovery. This program
uses interrupt-based i/o. Function SPI2 IRQHandler() is called
at everysample instant and in this case simply reads a sample value
from the ADC and writes it to the DAC. As in the previous ex-
ample, functions input sample(), output sample() and
stm32f4 init intr() are defined in file aic23 init.c in
order to hide unnecessary low-level detail from the student. Func-
tion stm32f4 init intr() initialises the AIC23 codec for
interrupt-based i/o.

Following initialisation, function main() simply enters an infi-
nite loop and all subsequent processing takes place within the inter-
rupt service routine SPI2 IRQHandler(). This simple program
example is instructive because its structure is used in many more
example programs. Processing algorithms may be inserted between
input sample() and output sample() function calls.

3.3. Simple Program Example - stm32f4 loop dma.c

Program stm32f4 loop dma.c, partially listed in figure 7, uses
DMA-based i/o and functions DMA1 Stream3 IRQHandler()
and DMA1 Stream4 IRQHandler() are executed each time an
input or output DMA transfer between ADC and memory or mem-
ory and DAC is completed. Implementation of ping-pong buffering

// tiva_loop_poll.c

#include "aic23_init.h"

main()
{
uint32_t sample;

tiva_init_poll(i2S_AudioFreq_8k,
AIC23_LINE_IN);

while(1)
{
sample = input_sample();

//
// insert processing algorithm here
//
output_sample(sample);
}
}

Fig. 5. Listing of program tiva loop poll.c.

// stm32f4_loop_intr.c

#include "aic31_init.h"

void SPI2_IRQHandler()
{
int16_t sample;

sample = input_left_sample();
//
// insert processing algorithm here
//
output_left_sample();
}

main()
{
stm32f4_init_intr(i2S_AudioFreq_8k,

AIC23_LINE_IN);
while(1);
}

Fig. 6. Listing of program stm32f4 loop intr.c.

is made relatively easy by the STM32F4 DMA mechanism. Follow-
ing initialisation, function main() waits for both input and output
DMA transfers to complete before processing a new block of input
samples by calling function process buffer().

4. EXPERIMENTAL RESULTS

Figure 8 shows an oscilloscope trace of the output from an example
program that passed an internally-generated PRBS through a band-
pass FIR filter before outputting it via the audio codec in order to
illustrate the frequency characteristics of the filter. This program
was run on a Tiva Launchpad using an AIC23-based daughter card.

5. RELATION TO PRIOR WORK

The work presented here extends directly that described, most re-
cently, in [1]. It represents the first comprehensive and practical
implementation of that work using very significantly less expensive

2245

// stm32f4_loop_dma.c

#include "aic23_init.h"

extern uint16_t pingIN[BUFSIZE],pingOUT[BUFSIZE],
pongIN[BUFSIZE],pongOUT[BUFSIZE];

int rx_proc_buffer, tx_proc_buffer;
volatile int RX_buffer_full = 0;
volatile int TX_buffer_empty = 0;

void DMA1_Stream3_IRQHandler()
{
if(DMA_GetITStatus(DMA1_Stream3,DMA_IT_TCIF3))
{
DMA_ClearITPendingBit(DMA1_Stream3,DMA_IT_TCIF3);
if(DMA_GetCurrentMemoryTarget(DMA1_Stream3))
rx_proc_buffer = PING;

else
rx_proc_buffer = PONG;

RX_buffer_full = 1;
}
}

void DMA1_Stream4_IRQHandler()
{
if(DMA_GetITStatus(DMA1_Stream4,DMA_IT_TCIF4))
{
DMA_ClearITPendingBit(DMA1_Stream4,DMA_IT_TCIF4);
if(DMA_GetCurrentMemoryTarget(DMA1_Stream4))
tx_proc_buffer = PING;

else
tx_proc_buffer = PONG;

TX_buffer_empty = 1;
}
}

void process_buffer()
{
int i;
uint16_t *rxbuf, *txbuf;

if (rx_proc_buffer == PING) rxbuf = pingIN;
else rxbuf = pongIN;
if (tx_proc_buffer == PING) txbuf = pingOUT;
else txbuf = pongOUT;

for (i=0 ; i<BUFSIZE ; i++)
//
// insert block processing algorithm here
//
*txbuf++ = *rxbuf++;
TX_buffer_empty = 0; RX_buffer_full = 0;
}

int main(void)
{
aic23_udma_init(I2S_AudioFreq_8k, AIC23_LINE_IN);
while(1)
{
while (!(RX_buffer_full && TX_buffer_empty));
process_buffer();

}
}

Fig. 7. Partial listing of program stm32f4 loop dma.c.

Fig. 8. Output from program tiva firprn dma.c showing
band-pass filtered PRBS.

hardware and, in so doing, moves laboratory-based DSP education
closer to more general microcontroller education.

6. CONCLUSIONS

Low-cost ARM Cortex M4 microcontroller-based EVMs available
from different manufacturers have the computational power needed
to implement hands-on real-time DSP teaching examples, coded in
C and using floating point variables, previously run on significantly
more expensive platforms. It is hoped that this may lead to a greater
uptake of hands-on DSP teaching in universities. Prototype inexpen-
sive audio codec daughter cards providing audio frequency analogue
i/o have been developed and demonstrated successfully. Commer-
cial availability of at least one of the daughter cards described is
anticipated later this year.

7. REFERENCES

[1] D. S. Reay, Digital Signal Processing and Applications with the
OMAP-L138 eXperimenter, Wiley, 2012.

[2] R. Chassaing and D. S. Reay, Digital Signal Processing and Ap-
plications with the TMS320C6713 and TMSC6416 DSK, Wiley,
2008.

[3] R. Chassaing, Digital Signal Processing and Applications with
the C6713 and C6416 DSK, Wiley, 2005.

[4] S. M. Kuo, B. H. Lee, and W. Tian, Real-Time Digital Signal
Processing: Fundamentals, Implementations and Applications,
Wiley, 2013.

[5] J. W. Valvano, Embedded Systems: Introduction to ARM Cortex-
M Microcontrollers: 1, Create Space Independent Publishing
Platform, 2012.

2246

