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ABSTRACT
This paper addresses the problem of estimating the positions
of nodes in a mobile network over time, when pre-surveyed
anchor nodes are not available. We do this by employing
both inter-node range measurements and odometry data. Both
types of measurement data are applied within the multidimen-
sional scaling paradigm, which maps pairwise dissimilarity
values into node coordinates. The mathematical treatment is
presented, along with several advantages of our proposed ap-
proach. We demonstrate its performance through simulation
across various parameter values. Further, we show the perfor-
mance using real range and odometry data gathered from our
CSOT mobile robot testbed.

1. INTRODUCTION

Node localization and tracking has broad interest and appli-
cation in the areas of wireless sensor networks (WSNs), as
well as the field of robotics. Such networks must frequently
operate in GPS denied environments, or where GPS is cost or
energy prohibitive, thus motivating the search for other meth-
ods [1,2]. Also, pre-surveyed node positions may not be avail-
able, creating an anchor free, or reference-less problem.

A popular approach to the cooperative relative localiza-
tion problem is to use a technique known as multidimensional
scaling (MDS). In MDS, high dimensional “dissimilarity”
data is mapped into a lower (usually 2) dimensional set
for easier visualization [3]. In the localization context, the
dissimilarity data is a set of pairwise range measurements
between nodes, that is, their dissimilarity in location. The
MDS solution maps this set of ranges to a set of points in
the 2D plane in a way that minimizes a particular stress func-
tion. Since only pairwise range measurements are used, in
the most general case a relative map is formed without the
use of anchor nodes, such that the distance between nodes is
preserved as much as possible. The relative map represents
the true positions up to a flip/rotation and possible translation.

∗This material is based in part upon work supported by the National Sci-
ence Foundation under grant no. ECCS-1343256.

There has been significant work in the literature on using
MDS as an approach to localization and tracking, particularly
when anchor nodes are available [4–6]. In [7], a weighted
stress function incorporating prior node position information
is proposed. Other authors have emphasized distributed ap-
proaches by map stitching [8, 9] or dealing with missing data
inherent in partially connected networks [10–12]. In [13],
subspace tracking was used to track relative changes in node
positions given their respective range measurements. How-
ever, without pre-surveyed anchor nodes, these methods ei-
ther cannot be used, or will present flip/rotation ambiguities
between time steps in a mobile system. This is an inherent
shortcoming of MDS without anchors; the relative maps pro-
duced at different times are not comparable.

We address this shortcoming by proposing a reference-
free method to track the relative positions of nodes in a net-
work over time through fusion of range measurements and
odometry data. Both the range and odometry data are placed
into the MDS framework in a manner that allows solving
jointly for the trajectory of all nodes. In MDS, range mea-
surements represent dissimilarity values between nodes in a
given time step, while odometry data represents dissimilar-
ity between the same node at two different time steps. Thus
the odometry data connects inter-node range measurements
across time, allowing for a joint solution using all the avail-
able data. Other data fusion approaches to localization exist
in the literature, e.g. [14–17]. However, these approaches all
rely on anchor nodes to function, and do not utilize the MDS
paradigm.

Our approach has several advantages, in addition to re-
moving the need for anchor nodes. First, all available data
is used to jointly estimate each node’s trajectory, reducing
the effects of noise on individual measurements. Second, we
take a non-parametric approach of stress function minimiza-
tion, which needs few assumptions about the environment in
which this method is used. No state-space assumptions or
statistical measurement models need be determined; these are
required for extended or unscented Kalman filters, for exam-
ple. Third, odometry data is commonly available on many
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platforms, often with high accuracy. For example, encoder
wheel measurements are commonly used for dead reckoning
on mobile robot platforms, and inexpensive inertial naviga-
tion systems (INS) are used on other types of mobile nodes.
Fourth, our formulation can easily account for missing data,
as well as differences in the relative quality of the various
measurements. Finally, the joint estimation of position across
multiple time steps eliminates the issue of flip/rotation ambi-
guities between those time steps. The relative reference frame
is preserved for the time values estimated.

In Section 2, we give the mathematical treatment of our
proposed method. The results of a comprehensive simula-
tion for varying node count, time steps, and noise is found in
Section 3. The results of our algorithm applied to real data
gathered by our testbed follows in Section 4. Finally we offer
our conclusions in Section 5.

2. MDS WITH RANGE AND ODOMETRY

We consider the problem of estimating the positions of N
nodes in each of K time steps. If the position of node n at

time k is given by s
(k)
n =

[
s
(k)
n,x s

(k)
n,y

]T
, then we can compile

the NK position vectors into the matrix

S =
[
s
(1)
1 s

(1)
2 . . . s

(K)
N

]T
∈ RNK×2, (1)

where a matrix is used instead of a vector by convention in
the MDS literature.

We assume that a set of N(N − 1) pairwise range mea-
surements are available at each time step, arranged in matrix
R(k) ∈ RN×N such that

[
R(k)

]
i,j

= r
(k)
ij is the range esti-

mate between nodes i and j at time step k. The main diago-
nal of R(k) is equal to zero by definition. The range values
are assumed to be already estimated from some method such
as time-of-flight, RSSI, etc. Similarly, we assume a set of
odometry distance measurements are available for each node,
which represent the distance traveled by that node between
time steps k − 1 and k. These are arranged into the diago-
nal matrix D(k) ∈ RN×N , such that

[
D(k)

]
i,i

= d
(k)
i is the

distance traveled by node i between times k − 1 and k. The
d
(k)
i values are estimated from encoder wheel pulses, inertial

navigation, etc. In this work we assume that the off-diagonal
elements of D(k) are unknown and set to zero.

The total data gathered are assembled into a block tridi-
agonal matrix ∆ ∈ RNK×NK . For example, if the network
consists of 4 nodes, and data is gathered across 3 time steps,
then

∆ =

R(3) D(3) 0
D(3) R(2) D(2)

0 D(2) R(1)

 (2)

is a 12×12 matrix of 4×4 blocks. Note that stepping between
blocks in ∆ is equivalent to stepping between time values k.

Taking the weighted stress function approach of [7], we
seek the set of positions Ŝ that minimize the following stress
function:

J (Ŝ) =

NK∑
i=1

NK∑
j=1

[W]i,j

(
[∆]i,j −

[
d(Ŝ)

]
i,j

)2

, (3)

where we have omitted the term representing prior knowledge
of node positions, because none is assumed here. In (3), the
matrix W ∈ RNK×NK is a matrix of non-negative scalar
weights, and the function d : RNK×2 → RNK×NK maps the
set of coordinates S into a matrix of pairwise distances with
the same structure as ∆. That is,[
d(Ŝ)

]
i,j

=

((
[Ŝ]i,: − [Ŝ]j,:

)T (
[Ŝ]i,: − [Ŝ]j,:

))1/2

. (4)

The stress function (3) is both nonlinear and non-convex in
the variable Ŝ. The most common technique for minimizing
this function is known as the SMACOF algorithm [3], and in-
volves transformation of the stress via majorizing functions.
The algorithm is iterative, and usually offers quick conver-
gence. We use the SMACOF algorithm in this paper to min-
imize (3), with the addition of trying multiple random initial
start configurations to help avoid local minima. It should also
be noted that taking the weighted approach to MDS avoids the
noise amplification caused by squaring the distance values in
the classical non-weighted MDS solution.

The values in the weighting matrix W represent our rel-
ative confidence in the data values. It conveniently allows
accounting for any missing data by simply setting the cor-
responding weight to zero, and thus will have no influence
on the stress function (3). For the remaining measurements,
traditional linear weighted least squares sets [W]i,j = 1

σ2
ij

,

where σ2
ij is the assumed variance of the corresponding mea-

surement. However, the stress function (3) is not linear due
to the distance mapping d(·), and thus this mapping does not
strictly apply. In our simulations we have obtained better re-
sults by assigning weights based on the relative standard devi-
ations. In this paper we assign weights by [W]i,j = c

σij
, with

c set so that the smallest weight value equals 1 to avoid nu-
merical instability. In the case where no a-priori information
is known about measurement quality, then all measurement
weights could be set to 1.

3. SIMULATION RESULTS

For our simulations, we have assumed that nodes begin in a
20× 20 meter area, and move randomly such that the straight
line distance traveled in the x and y directions at each time
step is distributed uniformly between −5 and 5 meters. The
variance in both the range and odometry measurements is as-
sumed proportional to the actual distance, which is consistent
with both measurement types. The proportionality for range
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Fig. 1. Simulated reference-free tracking solution for N = 5,
K = 6, σr = 100 mm, σd = 10 mm. The true trajectories
are shown for comparison, aligned via the Procrustean trans-
formation. Position RMSE = 428 mm.

and odometry are assumed known and denoted σ2
r , σ

2
d respec-

tively. That is, σ2
r , σ

2
d are the variances in the range measure-

ments per meter. In the results, we compute the root mean
squared error (RMSE) in position estimates by first aligning
the estimated reference-free map with the true trajectory map
via a Procrustean transformation [3]. An example estimated
trajectory for a set of 5 nodes is shown in Figure 1.

We characterize the general performance of our algorithm
through comprehensive simulations of our approach for vari-
ous values of node count, time steps, and noise levels. For the
first simulation, we measure the average RMSE of position
estimates for different values of node count N and time steps
K. The results are shown in Figure 2. From these results, we
see that estimation accuracy generally improves with increas-
ing N and decreasing K. As N increases, more range data
is available at each time index, and more odometry values are
available between time steps. However, as K increases while
leaving N constant, the sparsity of ∆ increases. Thus, more
positions must be estimated relative to the amount of data,
decreasing accuracy.

For our second simulation, we set N = 8 and K = 4,
with the noise standard deviations σr, σd allowed to vary. The
performance generally decreases as measurement uncertainty
increases. We note that across most of the range of σd, our
algorithm performs fairly consistently at 5 − 6 dBmm above
the range noise level.

4. TRACKING RESULTS ON REAL DATA

We have also tested our proposed tracking method on real
range and odometry data gathered by the CSOT testbed.
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Fig. 2. First comprehensive simulation results, RMSE vs.
K,N . Noise levels: σr = 100 mm, σd = 10 mm.
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Fig. 3. Second comprehensive simulation results, RMSE vs.
σr, σd, where N = 8, K = 4.

Originally introduced as RadioBOT in [18], the testbed fea-
tures the ability to gather both highly accurate ultrawideband
(UWB) range measurements and mobile robot odometry
data. Each mobile node is equipped with two UWB antennas
mounted above the robot on the left and right sides, respec-
tively, spaced approximately 315 mm apart. The measured
standard deviation of the UWB range measurement error is
approximately σr = 20 mm, and is very stable with the
distances measured. Odometry measurements are provided
by the iRobot mobile base encoder wheels, with estimated
standard deviation σd = 5 mm per meter traveled. Here
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Fig. 4. Initial hallway robot configuration for Test I.

we present the results of two measurement campaigns con-
ducted in a laboratory hallway, as a proof of concept to show
our algorithm’s ability to estimate node trajectories from ac-
tual measured data. The test parameters are summarized in
Table1. The hallway test setup is shown in Figure 4.

Test I Test II
Stationary Nodes 3 7
Mobile Nodes 5 1
Surveyed Data Stationary Stationary + mobile
Total time steps K 19 27
RMSE vs. Survey Data 18 mm 124 mm

Table 1. CSOT measurement campaign summary

For Test I, three of the nodes remained stationary for the
duration of the test, and their locations were surveyed to pro-
vide truth data. We stress that the tests are still reference-less,
because the stationary node locations are not known to the
algorithm. A complete set of pairwise range measurements
was taken at each time step, and encoder wheel data gathered
for each node’s movement between time steps. The collected
data were processed per our algorithm of Section 2, and the
results of the tracking shown in Figure 5. The RMSE of the
estimated positions is computed with the surveyed nodes after
aligning the two maps, and was found to be 16 mm.

In Test II, seven of the nodes remained stationary in a clus-
ter, while a single mobile node took a curved trajectory over
a distance of approximately 10 m. Data was collected in the
same manner as Test I, with the addition of surveying both
the initial and final positions of the mobile node. The RMSE
with all surveyed positions in this case was found to be 124
mm. We note the increase in error over Test I, as we are now
comparing surveyed truth data for both stationary and mobile
nodes. The test also took place over an increased number of
time steps and over a larger distance.

5. CONCLUSIONS

In this paper we have proposed a novel reference-free means
of estimating the trajectories of mobile nodes by adapting the
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Fig. 5. Test I tracking results. RMSE = 18 mm
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Fig. 6. Test II tracking results. RMSE = 124 mm.

popular MDS paradigm to use both inter-node range measure-
ments and intra-node odometry data. Unlike other methods,
our approach allows estimation of a node’s trajectory jointly
with all others, requires few assumptions, and preserves the
reference frame across time steps.

Future research could expand our MDS approach in sev-
eral ways. We believe position estimation accuracy could be
improved by estimating the unknown values in ∆, and incor-
porating their uncertainty into the weighting scheme. Also, it
would be beneficial to adapt our algorithm for real-time track-
ing, incorporating new data as it is collected. A distributed
approach to computing the estimated trajectories would also
be helpful for use in power restricted sensor networks.
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